Title:
|
A note on $\aleph$-spaces and $g$-metrizable spaces (English) |
Author:
|
Li, Zhaowen |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
3 |
Year:
|
2005 |
Pages:
|
803-808 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we give the mapping theorems on $\aleph $-spaces and $g$-metrizable spaces by means of some sequence-covering mappings, mssc-mappings and $\pi $-mappings. (English) |
Keyword:
|
$\aleph $-spaces |
Keyword:
|
$g$-metrizable spaces |
Keyword:
|
strong sequence-covering mappings |
Keyword:
|
sequence-covering mappings |
Keyword:
|
mssc-mappings |
Keyword:
|
$\pi $-mappings |
MSC:
|
54C10 |
MSC:
|
54E35 |
MSC:
|
54E40 |
MSC:
|
54E99 |
idZBL:
|
Zbl 1081.54525 |
idMR:
|
MR2153103 |
. |
Date available:
|
2009-09-24T11:27:49Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128023 |
. |
Reference:
|
[1] A. Arkhangel’skii: Mappings and spaces.Russian Math. Surveys 21 (1966), 115–162. MR 0227950, 10.1070/RM1966v021n04ABEH004169 |
Reference:
|
[2] S. Lin: Locally countable collections, locally finite collections and Alexandroff’s problems.Acta Math. Sinica 37 (1994), 491–496. (Chinese) Zbl 0812.54022, MR 1337096 |
Reference:
|
[3] S. Lin: Generalized Metric Spaces and Mappings.Chinese Scientific publ., Beijing, 1995. |
Reference:
|
[4] L. Foged: Characterizations of $\aleph $-spaces.Pacific J. Math. 110 (1984), 59–63. Zbl 0542.54030, MR 0722737, 10.2140/pjm.1984.110.59 |
Reference:
|
[5] J. Nagata: General metric spaces I.In: Topics in General Topology, North-Holland, Amsterdam, 1989. MR 1053200 |
Reference:
|
[6] F. Siwiec: Sequence-covering and countably bi-quotient mappings.Gen. Top. Appl. 1 (1971), 143–154. Zbl 0218.54016, MR 0288737 |
Reference:
|
[7] Y. Tanaka: Symmetric spaces, $g$-developable spaces and $g$-metrizable spaces.Math. Japonica 36 (1991), 71–84. Zbl 0732.54023, MR 1093356 |
Reference:
|
[8] F. Siwiec: On defining a space by a weak-base.Pacific J. Math. 52 (1974), 233–245. Zbl 0285.54022, MR 0350706, 10.2140/pjm.1974.52.233 |
Reference:
|
[9] G. Gruenhage, E. Michael and Y. Tanaka: Spaces determined by point-countable covers.Pacific J. Math. 113 (1984), 303–332. MR 0749538, 10.2140/pjm.1984.113.303 |
Reference:
|
[10] V. I. Ponomarev: Axioms of countability and continuous mappings.Bull. Pol. Acad. Math. 8 (1960), 127–133. MR 0116314 |
Reference:
|
[11] P. O’Meara: On paracompactness in function spaces with the compact-open topology.Proc. Amer. Math. Soc. 29 (1971), 183–189. MR 0276919 |
Reference:
|
[12] R. W. Heath: On open mappings and certain spaces satisfying the first countability axiom.Fund. Math. 57 (1965), 91–96. Zbl 0134.41802, MR 0179763, 10.4064/fm-57-1-91-96 |
Reference:
|
[13] J. A. Kofner: On a new class of spaces and some problems of symmetrizability theory.Soviet Math. Dokl. 10 (1969), 845–848. Zbl 0202.53702 |
Reference:
|
[14] D. K. Burke: Cauchy sequences in semimetric spaces.Proc. Amer. Math. Soc. 33 (1972), 161–164. Zbl 0233.54015, MR 0290328, 10.1090/S0002-9939-1972-0290328-3 |
Reference:
|
[15] K. B. Lee: On certain $g$-first countable spaces.Pacific J. Math. 65 (1976), 113–118. Zbl 0359.54022, MR 0423307, 10.2140/pjm.1976.65.113 |
Reference:
|
[16] L. Foged: On $g$-metrizability.Pacific J. Math. 98 (1982), 327–332. Zbl 0478.54025, MR 0650013, 10.2140/pjm.1982.98.327 |
Reference:
|
[17] S. Lin: A note on the Arens’ space and sequential fan.Topology Appl. 81 (1997), 185–196. Zbl 0885.54019, MR 1485766, 10.1016/S0166-8641(97)00031-X |
Reference:
|
[18] S. Lin: On $g$-metrizable spaces.Chinese Ann. Math. 13 (1992), 403–409. Zbl 0770.54030, MR 1190593 |
Reference:
|
[19] C. Liu and M. Dai: $g$-metrizability and $S_\omega $.Topology Appl. 60 (1994), 185–189. MR 1302472 |
Reference:
|
[20] Y. Tanaka: $\sigma $-hereditarily closure-preserving $k$-networks and $g$-metrizability.Proc. Amer. Math. Soc. 112 (1991), 283–290. Zbl 0770.54031, MR 1049850 |
Reference:
|
[21] R. H. Bing: Metrization of topological spaces.Canad. J. Math. 3 (1951), 175–186. Zbl 0042.41301, MR 0043449, 10.4153/CJM-1951-022-3 |
. |