Previous |  Up |  Next

Article

Title: Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral (English)
Author: Talvila, Erik
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 933-940
Summary lang: English
.
Category: math
.
Summary: When a real-valued function of one variable is approximated by its $n$th degree Taylor polynomial, the remainder is estimated using the Alexiewicz and Lebesgue $p$-norms in cases where $f^{(n)}$ or $f^{(n+1)}$ are Henstock-Kurzweil integrable. When the only assumption is that $f^{(n)}~$ is Henstock-Kurzweil integrable then a modified form of the $n$th degree Taylor polynomial is used. When the only assumption is that $f^{(n)}\in C^0$ then the remainder is estimated by applying the Alexiewicz norm to Schwartz distributions of order 1. (English)
Keyword: Taylor’s theorem
Keyword: Henstock-Kurzweil integral
Keyword: Alexiewicz norm
MSC: 26A24
MSC: 26A39
idZBL: Zbl 1081.26002
idMR: MR2184374
.
Date available: 2009-09-24T11:29:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128035
.
Reference: [1] G. A.  Anastassiou and S. S.  Dragomir: On some estimates of the remainder in Taylor’s formula.J.  Math. Anal. Appl. 263 (2001), 246–263. MR 1865279, 10.1006/jmaa.2001.7622
Reference: [2] V. G.  Čelidze and A. G.  Džvaršeǐšvili: The Theory of the Denjoy Integral and Some Applications.World Scientific, Singapore, 1989. MR 1036270
Reference: [3] G. B.  Folland: Remainder estimates in Taylor’s theorem.Amer. Math. Monthly 97 (1990), 233–235. Zbl 0737.41031, MR 1048439, 10.2307/2324693
Reference: [4] S.  Saks: Theory of the Integral.Monografie Matematyczne, Warsaw, 1937. Zbl 0017.30004
Reference: [5] C.  Swartz: Introduction to Gauge Integrals.World Scientific, Singapore, 2001. Zbl 0982.26006, MR 1845270
Reference: [6] H. B.  Thompson: Taylor’s theorem using the generalized Riemann integral.Amer. Math. Monthly 96 (1989), 346–350. Zbl 0682.26001, MR 0992083, 10.2307/2324092
Reference: [7] R.  Výborný: Some applications of Kurzweil-Henstock integration.Math. Bohem. 118 (1993), 425–441. MR 1251885
Reference: [8] W. H.  Young: The Fundamental Theorems of the Differential Calculus.Cambridge University Press, Cambridge, 1910.
.

Files

Files Size Format View
CzechMathJ_55-2005-4_10.pdf 325.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo