Previous |  Up |  Next

Article

Title: Characterizations of sub-semihypergroups by various triangular norms (English)
Author: Davvaz, B.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 923-932
Summary lang: English
.
Category: math
.
Summary: We investigate the structure and properties of $TL$-sub-semihypergroups, where $T$ is an arbitrary triangular norm on a given complete lattice $L$. We study its structure under the direct product and with respect to the fundamental relation. In particular, we consider $L=[0,1]$ and $T=\min $, and investigate the connection between $TL$-sub-semihypergroups and the probability space. (English)
Keyword: semihypergroup
Keyword: complete lattice
Keyword: triangular norm
Keyword: fundamental relation
Keyword: probability space
MSC: 20N20
idZBL: Zbl 1081.20079
idMR: MR2184373
.
Date available: 2009-09-24T11:29:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128034
.
Reference: [1] M. Akgul: Some properties of fuzzy groups.J.  Math. Anal. Appl. 133 (1998), 93–100. MR 0949320
Reference: [2] J. M. Anthony and H.  Sherwood: Fuzzy groups redefined.J.  Math. Anal. Appl. 69 (1979), 124–130. MR 0535285, 10.1016/0022-247X(79)90182-3
Reference: [3] G. Birkhoff: Lattice Theory.American Mathematical Society, Collequium Publications, Vol. 25, 1979. Zbl 0505.06001, MR 0598630
Reference: [4] P.  Corsini: Prolegomena of Hypergroup Theory, second edition.Aviani Editor, 1993. MR 1237639
Reference: [5] B.  Davvaz: Product of fuzzy $H_v$-subgroups.Fuzzy Math. 8 (2000), 43–51. Zbl 0957.20054, MR 1750241
Reference: [6] B.  Davvaz: $TL$-subpolygroups of a polygroup.Pure Math. Appl. 12 (2001), 137–145. Zbl 1004.20056, MR 1905125
Reference: [7] B.  Davvaz: Interval-values fuzzy subhypergroups.Korean J. Comput. Appl. Math. 6 (1999), 197–202. MR 1669606, 10.1007/BF02941917
Reference: [8] B.  Davvaz: Fuzzy $H_v$-groups.Fuzzy sets and systems 101 (1999), 191–195. Zbl 0935.20065, MR 1658991
Reference: [9] B.  Davvaz: Fuzzy hyperideals in semihypergroups.Italian J.  Pure Appl. Math. 8 (2000), 67–74. Zbl 1097.20524, MR 1793744
Reference: [10] J. A. Goguen: $L$-fuzzy sets.J.  Math. Anal. Appl. 18 (1967), 145–174. Zbl 0145.24404, MR 0224391, 10.1016/0022-247X(67)90189-8
Reference: [11] Young Bae Jun, Eun Hwan Roh and Hee Sik Kim: On fuzzy $B$-algebras.Czechoslovak Math.  J. 52(127) (2002), 375–384. MR 1905445, 10.1023/A:1021739030890
Reference: [12] Young Bae Jun, J.  Neggers and Hee Sik Kim: On $L$-fuzzy ideals in semirings I.Czechoslovak Math.  J. 48(123) (1998), 669–675. MR 1658233, 10.1023/A:1022479320940
Reference: [13] F. Marty: Sur une généralisation de la notion de groupe.Proceedings of the 8th Congress Math. Scandenaves, Stockholm, 1935, pp. 45–49. Zbl 0012.05303
Reference: [14] J.  Neggers, Young Bae Jun and Hee Sik Kim: On $L$-fuzzy ideals in semi-rings II.Czechoslovak Math.  J. 49(124) (1999), 127–133. MR 1676825, 10.1023/A:1022416410366
Reference: [15] V. V.  Negoita and D. A.  Ralescu: Applications of Fuzzy Sets System Analysis.Birkhäuser-Verlag, Basel, 1975. MR 0490083
Reference: [16] A.  Rosenfeld: Fuzzy groups.J.  Math. Anal. Appl. 35 (1971), 512–517. Zbl 0194.05501, MR 0280636, 10.1016/0022-247X(71)90199-5
Reference: [17] B.  Schweizer and A.  Sklar: Statistical metric spaces.Pacific J.  Math, 10 (1960), 313–334. MR 0115153, 10.2140/pjm.1960.10.313
Reference: [18] T.  Vougiouklis: Hyperstructures and Their Representations.Hadronic Press, Palm Harber, 1994. Zbl 0828.20076, MR 1270451
Reference: [19] Xue-hai Yuan and E.  Stanly Lee: A fuzzy algebraic system based on the theory of falling shadows.J.  Math. Anal. Appl. 208 (1997), 243–251. MR 1440354, 10.1006/jmaa.1997.5331
Reference: [20] L. A.  Zadeh: Fuzzy sets.Inform. Control 8 (1965), 338–353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
CzechMathJ_55-2005-4_9.pdf 329.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo