Title:
|
Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces (English) |
Author:
|
Ondreját, Martin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
1003-1039 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper deals with three issues. First we show a sufficient condition for a cylindrical local martingale to be a stochastic integral with respect to a cylindrical Wiener process. Secondly, we state an infinite dimensional version of the martingale problem of Stroock and Varadhan, and finally we apply the results to show that a weak existence plus uniqueness in law for deterministic initial conditions for an abstract stochastic evolution equation in a Banach space implies the strong Markov property. (English) |
Keyword:
|
Brownian representations |
Keyword:
|
martingale problem |
Keyword:
|
strong Markov property |
MSC:
|
60G44 |
MSC:
|
60H05 |
MSC:
|
60H15 |
idZBL:
|
Zbl 1081.60049 |
idMR:
|
MR2184381 |
. |
Date available:
|
2009-09-24T11:29:56Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128042 |
. |
Reference:
|
[1] Brzeźniak, Z.: On Stochastic Convolution in Banach Spaces and Applications.Stochastics and Stochastics Reports 61 (1997), 245–295. MR 1488138, 10.1080/17442509708834122 |
Reference:
|
[2] Chojnowska-Michalik, A.: Stochastic Differential Equations in Hilbert Spaces.Probability Theory, Banach Center Publications, PWN, Warsaw 5, 1979, pp. 53–74. Zbl 0414.60064, MR 0561468 |
Reference:
|
[3] Da Prato, G. and Zabczyk, J.: Stochastic Equations in Infinite Dimensions.Cambridge University Press, Cambridge, 1992. MR 1207136 |
Reference:
|
[4] Dettweiler, E.: Representation of Banach space valued martingales as stochastic integrals.Probability in Banach spaces 7, Proc. 7th Int. Conf., Oberwolfach/FRG 1988, Prog. Probab. 21, 1990, pp. 43–62. Zbl 0701.60049, MR 1105550 |
Reference:
|
[5] Doob, J. L.: Stochastic Processes.J. Wiley & Sons, New York, 1953. Zbl 0053.26802, MR 0058896 |
Reference:
|
[6] Dunford, N. and Schwartz, J. T.: Linear operators, Part I: General theory.Interscience, New York, 1958. MR 1009162 |
Reference:
|
[7] Karatzas, I. and Shreve, S.: Brownian Motion and Stochastic Calculus. Springer-Verlag, New York.1988. MR 0917065 |
Reference:
|
[8] Krylov, N. V.: Introduction to the Theory of Diffusion Processes.AMS, Providence, 1995. Zbl 0844.60050, MR 1311478 |
Reference:
|
[9] Kuratowski, K.: Topology, Vol. 1.Academic Press, New York and London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. |
Reference:
|
[10] Lepingle, D. and Ouvrard, J.-Y.: Martingales browniennes hilbertiennes.C. R. Acad. Sci. Paris Sér. A 276 (1973), 1225–1228. MR 0317406 |
Reference:
|
[11] Lisei, H.: The Markov property for the solution of the stochastic Navier-Stokes equation.Studia Univ. Babeş-Bolyai Math. 44 (1999), no. 4, 55–71. Zbl 1027.60066, MR 1989067 |
Reference:
|
[12] Métivier, M. and Pellaumail, J.: Stochastic Integration.Academic Press, New York-London-Toronto, Ont., 1980. MR 0578177 |
Reference:
|
[13] Neidhardt, A. L.: Stochastic Integrals in 2-Uniformly Smooth Banach Spaces. University of Wisconsin.1978. |
Reference:
|
[14] Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces.Dissertationes Mathematicae 426 (2004), 1–63. MR 2067962, 10.4064/dm426-0-1 |
Reference:
|
[15] Ouvrard, J.-Y.: Répresentation de martingales vectorielles de carré intégrable à valeurs dans des espaces de Hilbert réels séparables.Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975), 195–208. Zbl 0304.60032, MR 0394862, 10.1007/BF00534964 |
Reference:
|
[16] Pazy, A.: Semigroups of linear operators and applications to partial differential equations.Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. Zbl 0516.47023, MR 0710486 |
Reference:
|
[17] Stroock, D. V.; and Varadhan, S. R. S.: Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233, Springer-Verlag, Berlin-New York.1979. MR 0532498 |
. |