Previous |  Up |  Next

Article

Title: Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces (English)
Author: Ondreját, Martin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 1003-1039
Summary lang: English
.
Category: math
.
Summary: The paper deals with three issues. First we show a sufficient condition for a cylindrical local martingale to be a stochastic integral with respect to a cylindrical Wiener process. Secondly, we state an infinite dimensional version of the martingale problem of Stroock and Varadhan, and finally we apply the results to show that a weak existence plus uniqueness in law for deterministic initial conditions for an abstract stochastic evolution equation in a Banach space implies the strong Markov property. (English)
Keyword: Brownian representations
Keyword: martingale problem
Keyword: strong Markov property
MSC: 60G44
MSC: 60H05
MSC: 60H15
idZBL: Zbl 1081.60049
idMR: MR2184381
.
Date available: 2009-09-24T11:29:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128042
.
Reference: [1] Brzeźniak, Z.: On Stochastic Convolution in Banach Spaces and Applications.Stochastics and Stochastics Reports 61 (1997), 245–295. MR 1488138, 10.1080/17442509708834122
Reference: [2] Chojnowska-Michalik, A.: Stochastic Differential Equations in Hilbert Spaces.Probability Theory, Banach Center Publications, PWN, Warsaw 5, 1979, pp. 53–74. Zbl 0414.60064, MR 0561468
Reference: [3] Da Prato, G. and Zabczyk, J.: Stochastic Equations in Infinite Dimensions.Cambridge University Press, Cambridge, 1992. MR 1207136
Reference: [4] Dettweiler, E.: Representation of Banach space valued martingales as stochastic integrals.Probability in Banach spaces 7, Proc. 7th Int. Conf., Oberwolfach/FRG 1988, Prog. Probab. 21, 1990, pp. 43–62. Zbl 0701.60049, MR 1105550
Reference: [5] Doob, J. L.: Stochastic Processes.J. Wiley & Sons, New York, 1953. Zbl 0053.26802, MR 0058896
Reference: [6] Dunford, N. and Schwartz, J. T.: Linear operators, Part I: General theory.Interscience, New York, 1958. MR 1009162
Reference: [7] Karatzas, I. and Shreve, S.: Brownian Motion and Stochastic Calculus. Springer-Verlag, New York.1988. MR 0917065
Reference: [8] Krylov, N. V.: Introduction to the Theory of Diffusion Processes.AMS, Providence, 1995. Zbl 0844.60050, MR 1311478
Reference: [9] Kuratowski, K.: Topology, Vol. 1.Academic Press, New York and London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966.
Reference: [10] Lepingle, D. and Ouvrard, J.-Y.: Martingales browniennes hilbertiennes.C. R. Acad. Sci. Paris Sér. A 276 (1973), 1225–1228. MR 0317406
Reference: [11] Lisei, H.: The Markov property for the solution of the stochastic Navier-Stokes equation.Studia Univ. Babeş-Bolyai Math. 44 (1999), no. 4, 55–71. Zbl 1027.60066, MR 1989067
Reference: [12] Métivier, M. and Pellaumail, J.: Stochastic Integration.Academic Press, New York-London-Toronto, Ont., 1980. MR 0578177
Reference: [13] Neidhardt, A. L.: Stochastic Integrals in 2-Uniformly Smooth Banach Spaces. University of Wisconsin.1978.
Reference: [14] Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces.Dissertationes Mathematicae 426 (2004), 1–63. MR 2067962, 10.4064/dm426-0-1
Reference: [15] Ouvrard, J.-Y.: Répresentation de martingales vectorielles de carré intégrable à valeurs dans des espaces de Hilbert réels séparables.Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975), 195–208. Zbl 0304.60032, MR 0394862, 10.1007/BF00534964
Reference: [16] Pazy, A.: Semigroups of linear operators and applications to partial differential equations.Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. Zbl 0516.47023, MR 0710486
Reference: [17] Stroock, D. V.; and Varadhan, S. R. S.: Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233, Springer-Verlag, Berlin-New York.1979. MR 0532498
.

Files

Files Size Format View
CzechMathJ_55-2005-4_17.pdf 532.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo