Previous |  Up |  Next

Article

Title: General construction of non-dense disjoint iteration groups on the circle (English)
Author: Ciepliński, Krzysztof
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 1079-1088
Summary lang: English
.
Category: math
.
Summary: Let ${\mathcal F}=\lbrace F^{v}\: {\mathbb{S}}^{1}\rightarrow {\mathbb{S}}^{1}, v\in V\rbrace $ be a disjoint iteration group on the unit circle ${\mathbb{S}}^{1}$, that is a family of homeomorphisms such that $F^{v_{1}}\circ F^{v_{2}}=F^{v_{1}+v_{2}}$ for $v_{1}$, $v_{2}\in V$ and each $F^{v}$ either is the identity mapping or has no fixed point ($(V, +)$ is a $2$-divisible nontrivial Abelian group). Denote by $L_{{\mathcal F}}$ the set of all cluster points of $\lbrace F^{v}(z)$, $v\in V\rbrace $ for $z\in {\mathbb{S}}^{1}$. In this paper we give a general construction of disjoint iteration groups for which $\emptyset \ne L_{{\mathcal F}}\ne {\mathbb{S}}^{1}$. (English)
Keyword: (disjoint
Keyword: non-singular
Keyword: singular
Keyword: non-dense) iteration group
Keyword: (strictly) increasing mapping
MSC: 20F38
MSC: 37E10
MSC: 39B12
idZBL: Zbl 1081.37024
idMR: MR2184385
.
Date available: 2009-09-24T11:30:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128046
.
Reference: [1] J. S. Bae, K. J. Min, D. H. Sung and S. K. Yang: Positively equicontinuous flows are topologically conjugate to rotation flows.Bull. Korean Math. Soc. 36 (1999), 707–716. MR 1736616
Reference: [2] M. Bajger: On the structure of some flows on the unit circle.Aequationes Math. 55 (1998), 106–121. Zbl 0891.39017, MR 1600588, 10.1007/s000100050023
Reference: [3] K. Ciepliński: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups.Publ. Math. Debrecen 55 (1999), 363–383. MR 1721896
Reference: [4] K. Ciepliński: On conjugacy of disjoint iteration groups on the unit circle.European Conference on Iteration Theory (Muszyna-Złockie, 1998). Ann. Math. Sil. 13 (1999), 103–118. MR 1735195
Reference: [5] K. Ciepliński: The structure of disjoint iteration groups on the circle.Czechoslovak Math. J. 54 (2004), 131–153. MR 2040226, 10.1023/B:CMAJ.0000027254.04824.0c
Reference: [6] K. Ciepliński: Topological conjugacy of disjoint flows on the circle.Bull. Korean Math. Soc. 39 (2002), 333–346. MR 1904668, 10.4134/BKMS.2002.39.2.333
Reference: [7] K. Ciepliński and M. C. Zdun: On a system of Schröder equations on the circle.Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1883–1888. MR 2015635, 10.1142/S0218127403007709
Reference: [8] M. C. Zdun: The structure of iteration groups of continuous functions.Aequationes Math. 46 (1993), 19–37. Zbl 0801.39005, MR 1220719
.

Files

Files Size Format View
CzechMathJ_55-2005-4_21.pdf 355.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo