Article

Full entry | PDF   (0.3 MB)
Keywords:
connected graphs; hamiltonian-connected subgraphs; hamiltonian colorings; hamiltonian chromatic number
Summary:
If $G$ is a connected graph of order $n \ge 1$, then by a hamiltonian coloring of $G$ we mean a mapping $c$ of $V(G)$ into the set of all positive integers such that $\vert c(x) - c(y)\vert \ge n - 1 - D_{G}(x, y)$ (where $D_{G}(x, y)$ denotes the length of a longest $x-y$ path in $G$) for all distinct $x, y \in V(G)$. Let $G$ be a connected graph. By the hamiltonian chromatic number of $G$ we mean $\min (\max (c(z);\, z \in V(G))),$ where the minimum is taken over all hamiltonian colorings $c$ of $G$. The main result of this paper can be formulated as follows: Let $G$ be a connected graph of order $n \ge 3$. Assume that there exists a subgraph $F$ of $G$ such that $F$ is a hamiltonian-connected graph of order $i$, where $2 \le i \le \frac{1}{2}(n + 1)$. Then $\mathop {\mathrm hc}(G) \le (n - 2)^2 + 1 - 2(i - 1)(i - 2)$.
References:
[1] G.  Chartrand and L.  Lesniak: Graphs & Digraphs. Third edition. Chapman & Hall, London, 1996. MR 1408678
[2] G.  Chartrand, L.  Nebeský, and P.  Zhang: Hamiltonian colorings of graphs. Discrete Appl. Math. 146 (2005), 257–272. DOI 10.1016/j.dam.2004.08.007 | MR 2115148
[3] G.  Chartrand, L.  Nebeský, and P.  Zhang: On hamiltonian colorings of graphs. Discrete Mathematics 290 (2005), 133–134. DOI 10.1016/j.disc.2004.10.009 | MR 2123385
[4] G.  Chartrand, L.  Nebeský, and P.  Zhang: Bounds for the hamiltonian chromatic number of a graph. Congressus Numerantium 157 (2002), 113–125. MR 1985129
[5] L.  Nebeský: Hamiltonian colorings of connected graphs with long cycles. Math. Bohem. 128 (2003), 263–275. MR 2012604

Partner of