Previous |  Up |  Next

Article

Title: The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 317-338
Summary lang: English
.
Category: math
.
Summary: If $G$ is a connected graph of order $n \ge 1$, then by a hamiltonian coloring of $G$ we mean a mapping $c$ of $V(G)$ into the set of all positive integers such that $\vert c(x) - c(y)\vert \ge n - 1 - D_{G}(x, y)$ (where $D_{G}(x, y)$ denotes the length of a longest $x-y$ path in $G$) for all distinct $x, y \in V(G)$. Let $G$ be a connected graph. By the hamiltonian chromatic number of $G$ we mean \[ \min (\max (c(z);\, z \in V(G))), \] where the minimum is taken over all hamiltonian colorings $c$ of $G$. The main result of this paper can be formulated as follows: Let $G$ be a connected graph of order $n \ge 3$. Assume that there exists a subgraph $F$ of $G$ such that $F$ is a hamiltonian-connected graph of order $i$, where $2 \le i \le \frac{1}{2}(n + 1)$. Then $\mathop {\mathrm hc}(G) \le (n - 2)^2 + 1 - 2(i - 1)(i - 2)$. (English)
Keyword: connected graphs
Keyword: hamiltonian-connected subgraphs
Keyword: hamiltonian colorings
Keyword: hamiltonian chromatic number
MSC: 05C15
MSC: 05C38
MSC: 05C45
MSC: 05C78
idZBL: Zbl 1164.05356
idMR: MR2291739
.
Date available: 2009-09-24T11:33:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128069
.
Reference: [1] G.  Chartrand and L.  Lesniak: Graphs & Digraphs. Third edition.Chapman & Hall, London, 1996. MR 1408678
Reference: [2] G.  Chartrand, L.  Nebeský, and P.  Zhang: Hamiltonian colorings of graphs.Discrete Appl. Math. 146 (2005), 257–272. MR 2115148, 10.1016/j.dam.2004.08.007
Reference: [3] G.  Chartrand, L.  Nebeský, and P.  Zhang: On hamiltonian colorings of graphs.Discrete Mathematics 290 (2005), 133–134. MR 2123385, 10.1016/j.disc.2004.10.009
Reference: [4] G.  Chartrand, L.  Nebeský, and P.  Zhang: Bounds for the hamiltonian chromatic number of a graph.Congressus Numerantium 157 (2002), 113–125. MR 1985129
Reference: [5] L.  Nebeský: Hamiltonian colorings of connected graphs with long cycles.Math. Bohem. 128 (2003), 263–275. MR 2012604
.

Files

Files Size Format View
CzechMathJ_56-2006-2_4.pdf 373.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo