Previous |  Up |  Next

Article

Title: $R_0$-algebras and weak dually residuated lattice ordered semigroups (English)
Author: Lianzhen, Liu
Author: Kaitai, Li
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 339-348
Summary lang: English
.
Category: math
.
Summary: We introduce the notion of weak dually residuated lattice ordered semigroups (WDRL-semigroups) and investigate the relation between $R_0$-algebras and WDRL-semigroups. We prove that the category of $R_0$-algebras is equivalent to the category of some bounded WDRL-semigroups. Moreover, the connection between WDRL-semigroups and DRL-semigroups is studied. (English)
Keyword: $R_0$-algebra
Keyword: DRL-semigroup
Keyword: WDRL-semigroup
MSC: 03G25
MSC: 06F05
idZBL: Zbl 1164.06324
idMR: MR2291740
.
Date available: 2009-09-24T11:33:30Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128070
.
Reference: [1] C. C. Chang: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [2] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer Academic Publishers, Dordrecht, 1998. MR 1900263
Reference: [3] T. Kovář: A general theory of dually residuated lattice ordered monoids.Thesis, Palacký Univ. Olomouc, 1996.
Reference: [4] T. Kovář: Two remarks on dually residuated lattice ordered semigroups.Math. Slovaca 49 (1999), 17–18. MR 1804468
Reference: [5] J. Rachůnek: DRL-semigroups and $MV$-algebras.Czechoslovak Math. J. 123 (1998), 365–372. MR 1624268
Reference: [6] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DRL_{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115
Reference: [7] L. Z. Liu and K. T. Li: Pseudo MTL-algebras and pseudo $R_0$-algebras.Sci. Math. Jpn. 61 (2005), 423–427. MR 2140101
Reference: [8] D. W. Pei and G. J. Wang: The completeness and application of formal systems.Science in China (series E) 1 (2002), 56–64. MR 1909527
Reference: [9] K. L. N. Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284
Reference: [10] G. J. Wang: Non-classical Mathematical Logic and Approximate Reasoning.Science Press, BeiJing, 2000.
.

Files

Files Size Format View
CzechMathJ_56-2006-2_5.pdf 308.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo