Previous |  Up |  Next

Article

Title: On monotone permutations of $\ell$-cyclically ordered sets (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 403-415
Summary lang: English
.
Category: math
.
Summary: For an $\ell $-cyclically ordered set $M$ with the $\ell $-cyclic order $C$ let $P(M)$ be the set of all monotone permutations on $M$. We define a ternary relation $\overline{C}$ on the set $P(M)$. Further, we define in a natural way a group operation (denoted by $\cdot $) on $P(M)$. We prove that if the $\ell $-cyclic order $C$ is complete and $\overline{C}\ne \emptyset $, then $(P(M), \cdot ,\overline{C})$ is a half cyclically ordered group. (English)
Keyword: $\ell $-cyclically ordered set
Keyword: completeness
Keyword: monotone permutation
Keyword: half cyclically ordered group
MSC: 06F15
idZBL: Zbl 1164.06327
idMR: MR2291745
.
Date available: 2009-09-24T11:34:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128075
.
Reference: [1] Š.  Černák: On the maximal Dedekind completion of a half partially ordered group.Math. Slovaca 46 (1996), 379–390. MR 1472632
Reference: [2] Š.  Černák: Cantor extension of a half lattice ordered group.Math. Slovaca 48 (1998), 221–231. MR 1647682
Reference: [3] Š.  Černák: Maximal Dedekind completion of a half lattice ordered group.Math. Slovaca 49 (1999), 403–416. MR 1719680
Reference: [4] M.  Droste, M.  Giraudet, and D.  Macpherson: Periodic ordered permutation groups and cyclic orderings.J.  Combinatorial Theory, Series  B 63 (1995), 310–321. MR 1320173, 10.1006/jctb.1995.1022
Reference: [5] P. C.  Fishburn, D. R.  Woodall: Cyclic orders.Order 16 (1999), 149–164. MR 1752172, 10.1023/A:1006381208272
Reference: [6] M.  Giraudet, F.  Lucas: Groupes à moitié ordonnés.Fundamenta Math. 139 (1991), 75–89. MR 1150592, 10.4064/fm-139-2-75-89
Reference: [7] M.  Giraudet, J.  Rachůnek: Varieties of half lattice ordered groups of monotonic permutations in chains.Prepublication No  57, Université Paris  7, CNRS Logique (1996).
Reference: [8] J.  Jakubík: On half lattice ordered groups.Czechoslovak Math.  J. 46 (1996), 745–767. MR 1414606
Reference: [9] J.  Jakubík: Lexicographic products of half linearly ordered groups.Czechoslovak Math. J. 51 (2001), 127–138. MR 1814638, 10.1023/A:1013761906636
Reference: [10] J.  Jakubík: On half cyclically ordered groups.Czechoslovak Math.  J. 52 (2002), 275–294. MR 1905435, 10.1023/A:1021718426347
Reference: [11] J.  Jakubík, Š.  Černák: On convex linearly ordered subgroups of a $h\ell $-group.Math. Slovaca 50 (2000), 127–133. MR 1763115
Reference: [12] V.  Novák: Cyclically ordered sets.Czechoslovak Math.  J. 32 (1982), 460–473. MR 0669787
Reference: [13] V.  Novák, M.  Novotný: Universal cyclically ordered sets.Czechoslovak Math.  J. 35 (1985), 158–161. MR 0779343
Reference: [14] V.  Novák, M.  Novotný: On representations of cyclically ordered sets.Czechoslovak Math.  J. 39 (1989), 127–132. MR 0669787
Reference: [15] A.  Quilliot: Cyclic orders.European J.  Combin. 10 (1989), 477–488. Zbl 0692.05059, MR 1014556, 10.1016/S0195-6698(89)80022-8
Reference: [16] Dao Rong Ton: Torsion classes and torsion prime selectors of $h\ell $-groups.Math. Slovaca 50 (2000), 31–40. MR 1764343
.

Files

Files Size Format View
CzechMathJ_56-2006-2_10.pdf 321.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo