Title:
|
On monotone permutations of $\ell$-cyclically ordered sets (English) |
Author:
|
Jakubík, Ján |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
403-415 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For an $\ell $-cyclically ordered set $M$ with the $\ell $-cyclic order $C$ let $P(M)$ be the set of all monotone permutations on $M$. We define a ternary relation $\overline{C}$ on the set $P(M)$. Further, we define in a natural way a group operation (denoted by $\cdot $) on $P(M)$. We prove that if the $\ell $-cyclic order $C$ is complete and $\overline{C}\ne \emptyset $, then $(P(M), \cdot ,\overline{C})$ is a half cyclically ordered group. (English) |
Keyword:
|
$\ell $-cyclically ordered set |
Keyword:
|
completeness |
Keyword:
|
monotone permutation |
Keyword:
|
half cyclically ordered group |
MSC:
|
06F15 |
idZBL:
|
Zbl 1164.06327 |
idMR:
|
MR2291745 |
. |
Date available:
|
2009-09-24T11:34:10Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128075 |
. |
Reference:
|
[1] Š. Černák: On the maximal Dedekind completion of a half partially ordered group.Math. Slovaca 46 (1996), 379–390. MR 1472632 |
Reference:
|
[2] Š. Černák: Cantor extension of a half lattice ordered group.Math. Slovaca 48 (1998), 221–231. MR 1647682 |
Reference:
|
[3] Š. Černák: Maximal Dedekind completion of a half lattice ordered group.Math. Slovaca 49 (1999), 403–416. MR 1719680 |
Reference:
|
[4] M. Droste, M. Giraudet, and D. Macpherson: Periodic ordered permutation groups and cyclic orderings.J. Combinatorial Theory, Series B 63 (1995), 310–321. MR 1320173, 10.1006/jctb.1995.1022 |
Reference:
|
[5] P. C. Fishburn, D. R. Woodall: Cyclic orders.Order 16 (1999), 149–164. MR 1752172, 10.1023/A:1006381208272 |
Reference:
|
[6] M. Giraudet, F. Lucas: Groupes à moitié ordonnés.Fundamenta Math. 139 (1991), 75–89. MR 1150592, 10.4064/fm-139-2-75-89 |
Reference:
|
[7] M. Giraudet, J. Rachůnek: Varieties of half lattice ordered groups of monotonic permutations in chains.Prepublication No 57, Université Paris 7, CNRS Logique (1996). |
Reference:
|
[8] J. Jakubík: On half lattice ordered groups.Czechoslovak Math. J. 46 (1996), 745–767. MR 1414606 |
Reference:
|
[9] J. Jakubík: Lexicographic products of half linearly ordered groups.Czechoslovak Math. J. 51 (2001), 127–138. MR 1814638, 10.1023/A:1013761906636 |
Reference:
|
[10] J. Jakubík: On half cyclically ordered groups.Czechoslovak Math. J. 52 (2002), 275–294. MR 1905435, 10.1023/A:1021718426347 |
Reference:
|
[11] J. Jakubík, Š. Černák: On convex linearly ordered subgroups of a $h\ell $-group.Math. Slovaca 50 (2000), 127–133. MR 1763115 |
Reference:
|
[12] V. Novák: Cyclically ordered sets.Czechoslovak Math. J. 32 (1982), 460–473. MR 0669787 |
Reference:
|
[13] V. Novák, M. Novotný: Universal cyclically ordered sets.Czechoslovak Math. J. 35 (1985), 158–161. MR 0779343 |
Reference:
|
[14] V. Novák, M. Novotný: On representations of cyclically ordered sets.Czechoslovak Math. J. 39 (1989), 127–132. MR 0669787 |
Reference:
|
[15] A. Quilliot: Cyclic orders.European J. Combin. 10 (1989), 477–488. Zbl 0692.05059, MR 1014556, 10.1016/S0195-6698(89)80022-8 |
Reference:
|
[16] Dao Rong Ton: Torsion classes and torsion prime selectors of $h\ell $-groups.Math. Slovaca 50 (2000), 31–40. MR 1764343 |
. |