Previous |  Up |  Next

Article

Title: Connected domination critical graphs with respect to relative complements (English)
Author: Chen, Xue-Gang
Author: Sun, Liang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 417-423
Summary lang: English
.
Category: math
.
Summary: A dominating set in a graph $G$ is a connected dominating set of $G$ if it induces a connected subgraph of $G$. The minimum number of vertices in a connected dominating set of $G$ is called the connected domination number of $G$, and is denoted by $\gamma _{c}(G)$. Let $G$ be a spanning subgraph of $K_{s,s}$ and let $H$ be the complement of $G$ relative to $K_{s,s}$; that is, $K_{s,s}=G\oplus H$ is a factorization of $K_{s,s}$. The graph $G$ is $k$-$\gamma _{c}$-critical relative to $K_{s,s}$ if $\gamma _{c}(G)=k$ and $\gamma _{c}(G+e)<k$ for each edge $e\in E(H)$. First, we discuss some classes of graphs whether they are $\gamma _{c}$-critical relative to $K_{s,s}$. Then we study $k$-$\gamma _{c}$-critical graphs relative to $K_{s,s}$ for small values of $k$. In particular, we characterize the $3$-$\gamma _{c}$-critical and $4$-$\gamma _{c}$-critical graphs. (English)
Keyword: connected domination number
Keyword: connected domination critical graph relative to $K_{s,s}$ tree.
MSC: 05C35
MSC: 05C69
idZBL: Zbl 1164.05417
idMR: MR2291746
.
Date available: 2009-09-24T11:34:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128076
.
Reference: [1] E. Cockaye: Variations on the Domination Number of a Graph.Lecture at the University of Natal, 1988.
Reference: [2] W. Goddard, M. A. Henning and H. C. Swart: Some Nordhaus-Gaddum-type results.J. Graph Theory 16 (1992), 221–231. MR 1168581, 10.1002/jgt.3190160305
Reference: [3] T. W. Haynes and M. A. Henning: Domination critical graphs with respect to relative complements.Australas J. Combin. 18 (1998), 115–126. MR 1658309
Reference: [4] T. W. Haynes, M. A. Henning and L. C. van der Merwe: Domination and total domination critical trees with respect to relative complements.Ars Combin. 59 (2001), 117–127. MR 1832203
Reference: [5] T. W. Haynes, M. A. Henning and L. C. van der Merwe: Total domination critical graphs with respect to relative complements.Ars Combin. 64 (2002), 169–179. MR 1914205
Reference: [6] T. W. Haynes, C. M. Mynhardt and L. C. van der Merwe: Total domination edge critical graphs.Utilitas Math. 54 (1998), 229–240. MR 1658130
Reference: [7] S. T. Hedetniemi: Renu Laskar, Connected domination in graphs.Graph Theory and Combinatorics (1984), 209–217. MR 0777177
Reference: [8] E. Sampathkumar and H. B. Walikar: The connected domination number of a graph.Math. Phys. Sci. 13 (1979), 607–613. MR 0575817
.

Files

Files Size Format View
CzechMathJ_56-2006-2_11.pdf 301.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo