Previous |  Up |  Next

Article

Title: A note on embedding into product spaces (English)
Author: Sofi, M. A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 507-513
Summary lang: English
.
Category: math
.
Summary: Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of $E$, thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces. (English)
Keyword: factorization
Keyword: embedding
Keyword: opertator ideal
MSC: 46A11
MSC: 47A68
MSC: 47L20
idZBL: Zbl 1164.46300
idMR: MR2291751
.
Date available: 2009-09-24T11:34:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128081
.
Reference: [1] S. F.  Bellenot: Factorable bounded operators and Schwartz spaces.Proc. Amer. Math. Soc. 42 (1974), 551–554. MR 0328557, 10.1090/S0002-9939-1974-0328557-4
Reference: [2] S. F.  Bellenot: The Schwartz-Hilbert variety.Mich. Math. Jour. 22 (1975), 373–377. Zbl 0308.46002, MR 0394086
Reference: [3] J.  Diestel, J.  Jarchow, and A.  Tonge: Absolutely Summing Operators.Cambridge University Press, London, 1995. MR 1342297
Reference: [4] H.  Jarchow: Die Universalität des Raumes  $C_0$ für die Klasse der Schwartz-Räume.Math. Ann. 203 (1973), 211–214. MR 0320700, 10.1007/BF01629255
Reference: [5] W. B. Johnson, H.  König, B.  Maurey, and J. R.  Retherford: Eigenvalues of $p$-summing and $l_p$-type operators in Banach spaces.Jour. Func. Anal. 32 (1979), 353–380. MR 0538861, 10.1016/0022-1236(79)90046-6
Reference: [6] H.  Junek: Locally Convex Spaces and Operator Ideals.Teubner, Stuttgart-Leipzig, 1983. MR 0758254
Reference: [7] A.  Pietsch: Operator Ideals.North Holland, Amsterdam, 1980. Zbl 0455.47032, MR 0582655
Reference: [8] D.  Randtke: A simple example of a universal Schwartz space.Proc. Amer. Math. Soc. 37 (1973), 185–188. MR 0312192, 10.1090/S0002-9939-1973-0312192-7
Reference: [9] D.  Randtke: On the embedding of Schwartz spaces into product spaces.Proc. Amer. Math. Soc. 55 (1976), 87–92. MR 0410316, 10.1090/S0002-9939-1976-0410316-7
Reference: [10] S. A.  Saxon: Embedding nuclear spaces in products of an arbitrary Banach space.Proc. Amer. Math. Soc. 34 (1972), 138–140. Zbl 0257.46006, MR 0318823, 10.1090/S0002-9939-1972-0318823-9
Reference: [11] H. H.  Schaefer: Topological Vector Spaces.Springer Verlag, , 1980. Zbl 0435.46003, MR 0342978
Reference: [12] M. A.  Sofi: Some remarks on $\lambda (P)$-nuclearity.Arch. der Math. 47 (1986), 353–358. Zbl 0577.46004, MR 0866524, 10.1007/BF01191362
Reference: [13] M. A.  Sofi: Factoring $\lambda (P)$-nuclear operators over nuclear Frechet spaces.Jour. Math. Sciences, Part  I, 28 (1994), 267–281.
Reference: [14] T.  Terzioglu: A characterization of compact linear mappings.Arch. der Math. 22 (1971), 76-78. Zbl 0215.20902, MR 0291865, 10.1007/BF01222542
Reference: [15] M.  Valdivia: Nuclearity and Banach spaces.Proc. Edinburgh Math. Soc. Ser.  2 20 (1977), 205–209. Zbl 0354.46002, MR 0435778
.

Files

Files Size Format View
CzechMathJ_56-2006-2_16.pdf 323.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo