Previous |  Up |  Next

Article

Title: Perimeter preserver of matrices over semifields (English)
Author: Song, Seok-Zun
Author: Kang, Kyung-Tae
Author: Jun, Young-Bae
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 515-524
Summary lang: English
.
Category: math
.
Summary: For a rank-$1$ matrix $A= {\bold a \bold b}^t$, we define the perimeter of $A$ as the number of nonzero entries in both $\bold a$ and $\bold b$. We characterize the linear operators which preserve the rank and perimeter of rank-$1$ matrices over semifields. That is, a linear operator $T$ preserves the rank and perimeter of rank-$1$ matrices over semifields if and only if it has the form $T(A)=U A V$, or $T(A)=U A^t V$ with some invertible matrices U and V. (English)
Keyword: linear operator
Keyword: rank
Keyword: dominate
Keyword: perimeter
Keyword: $(U,V)$-operator
MSC: 15A03
MSC: 15A04
MSC: 15A23
MSC: 15A33
idZBL: Zbl 1164.15300
idMR: MR2291752
.
Date available: 2009-09-24T11:35:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128082
.
Reference: [1] L. B. Beasley and N. J. Pullman: Boolean rank-preserving operators and Boolean rank-1 spaces.Linear Algebra Appl. 59 (1984), 55–77. MR 0743045, 10.1016/0024-3795(84)90158-7
Reference: [2] L. B. Beasley, S. Z. Song and S. G. Lee: Zero term rank preservers.Linear and Multilinear Algebra 48 (2001), 313–318. MR 1928400, 10.1080/03081080108818677
Reference: [3] S. Z. Song, S. R. Park: Maximal column rank preservers of fuzzy matrices.Discuss. Math. Gen. Algebra Appl. 21 (2001), 207–218. MR 1894316, 10.7151/dmgaa.1038
.

Files

Files Size Format View
CzechMathJ_56-2006-2_17.pdf 342.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo