Previous |  Up |  Next

Article

Title: A note on on-line ranking number of graphs (English)
Author: Semanišin, G.
Author: Soták, R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 591-599
Summary lang: English
.
Category: math
.
Summary: A $k$-ranking of a graph $G=(V,E)$ is a mapping $\varphi \:V \rightarrow \lbrace 1,2,\dots ,k\rbrace $ such that each path with endvertices of the same colour $c$ contains an internal vertex with colour greater than $c$. The ranking number of a graph $G$ is the smallest positive integer $k$ admitting a $k$-ranking of $G$. In the on-line version of the problem, the vertices $v_1,v_2,\dots ,v_n$ of $G$ arrive one by one in an arbitrary order, and only the edges of the induced graph $G[\lbrace v_1,v_2,\dots ,v_i\rbrace ]$ are known when the colour for the vertex $v_i$ has to be chosen. The on-line ranking number of a graph $G$ is the smallest positive integer $k$ such that there exists an algorithm that produces a $k$-ranking of $G$ for an arbitrary input sequence of its vertices. We show that there are graphs with arbitrarily large difference and arbitrarily large ratio between the ranking number and the on-line ranking number. We also determine the on-line ranking number of complete $n$-partite graphs. The question of additivity and heredity is discussed as well. (English)
Keyword: on-line ranking number
Keyword: complete $n$-partite graph
Keyword: hereditary and additive properties of graphs
MSC: 05C15
MSC: 05C78
MSC: 05C85
idZBL: Zbl 1164.05360
idMR: MR2291759
.
Date available: 2009-09-24T11:35:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128089
.
Reference: [1] B.  Bollobás: Extremal Graph Theory.Academic Press, London, 1978. MR 0506522
Reference: [2] M.  Borowiecki, I.  Broere, M.  Frick, P.  Mihók, and G.  Semanišin: Survey of hereditary properties of graphs.Discuss. Math. Graph Theory 17 (1997), 5–50. MR 1633268, 10.7151/dmgt.1037
Reference: [3] J. I.  Brown, D. G.  Corneil: On generalized graph colourings.J.  Graph Theory 11 (1987), 86–99. MR 0876208, 10.1002/jgt.3190110113
Reference: [4] E.  Bruoth, M.  Horňák: On-line ranking number for cycles and paths.Discuss. Math. Graph Theory 19 (1999), 175–197. MR 1768300, 10.7151/dmgt.1094
Reference: [5] E.  Bruoth, M.  Horňák: A lower bound for on-line ranking number of a path.Discrete Math (to appear). MR 2311106
Reference: [6] I.  Schiermayer, Zs. Tuza, and M.  Voigt: On-line ranking of graphs.Discrete Math. 212 (2000), 141–147. MR 1748681, 10.1016/S0012-365X(99)00215-0
Reference: [7] M. Weaver, D. B.  West: Relaxed chromatic numbers of graphs.Graphs Comb. 10 (1994), 75–93. MR 1273014, 10.1007/BF01202473
.

Files

Files Size Format View
CzechMathJ_56-2006-2_24.pdf 321.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo