Previous |  Up |  Next

Article

Title: Projective modules and prime submodules (English)
Author: Alkan, Mustafa
Author: Tiraş, Yücel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 601-611
Summary lang: English
.
Category: math
.
Summary: In this paper, we use Zorn’s Lemma, multiplicatively closed subsets and saturated closed subsets for the following two topics: (i) The existence of prime submodules in some cases, (ii) The proof that submodules with a certain property satisfy the radical formula. We also give a partial characterization of a submodule of a projective module which satisfies the prime property. (English)
Keyword: prime submodule
Keyword: primary submodule
Keyword: ${\scr S}$-closed subsets
Keyword: the radical formula
MSC: 13A10
MSC: 13A99
MSC: 13C10
MSC: 13C13
idZBL: Zbl 1155.13300
idMR: MR2291760
.
Date available: 2009-09-24T11:36:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128090
.
Reference: [1] Z. A.  El-Bast, P. F.  Smith: Multiplication modules.Comm. in Algebra 16 (1988), 755–779. MR 0932633, 10.1080/00927878808823601
Reference: [2] J.  Jenkins, P. F.  Smith: On the prime radical of a module over a commutative ring.Comm. in Algebra 20 (1992), 3593–9602. MR 1191968, 10.1080/00927879208824530
Reference: [3] C. U.  Jensen: A remark on flat and projective modules.Canad. J.  Math. 18 (1966), 943–949. Zbl 0144.02302, MR 0199226, 10.4153/CJM-1966-093-7
Reference: [4] C. P.  Lu: Prime Submodules of modules.Comm. Math. Univ. Sancti Pauli 33 (1984), 61–69. Zbl 0575.13005, MR 0741378
Reference: [5] C. P.  Lu: Union of prime submodules.Houston Journal of Math. 23 (1997), 203–213. MR 1682641
Reference: [6] R. L.  McCasland, M. E.  Moore: On radicals of submodules of finitely generated modules.Canad. Math. Bull. 29 (1986), 37–39. MR 0824879, 10.4153/CMB-1986-006-7
Reference: [7] R. L.  McCasland, M. E.  Moore: On radicals of submodules.Comm. in Algebra 19 (1991), 1327–1341. MR 1111134, 10.1080/00927879108824205
Reference: [8] R. L.  McCasland, P. F.  Smith: Prime submodules of Noetherian modules.Rocky Mountain J.  Math 23 (1993), 1041–1062. MR 1245463, 10.1216/rmjm/1181072540
Reference: [9] D.  Pusat-Yilmaz, P. F.  Smith: Modules which satisfy the radical formula.Acta. Math. Hungar. 1–2 (2002), 155–167. MR 1906216, 10.1023/A:1015624503160
Reference: [10] P. F.  Smith: Primary modules over commutative rings.Glasgow Math.  J. 43 (2001), 103–111. Zbl 0979.13003, MR 1825725, 10.1017/S0017089501010084
Reference: [11] R. Y.  Sharp: Steps in Commutative Algebra. London Mathematical Society Student Text  19.Cambridge university Press, Cambridge, 1990. MR 1070568
.

Files

Files Size Format View
CzechMathJ_56-2006-2_25.pdf 339.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo