Previous |  Up |  Next

Article

Title: On the existence of multiple solutions for a nonlocal BVP with vector-valued response (English)
Author: Nowakowski, Andrzej
Author: Orpel, Aleksandra
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 621-640
Summary lang: English
.
Category: math
.
Summary: The existence of positive solutions for a nonlocal boundary-value problem with vector-valued response is investigated. We develop duality and variational principles for this problem. Our variational approach enables us to approximate solutions and give a measure of a duality gap between the primal and dual functional for minimizing sequences. (English)
Keyword: nonlocal boundary-value problems
Keyword: positive solutions
Keyword: duality method
Keyword: variational method
MSC: 34B10
MSC: 34B15
MSC: 34B18
MSC: 47J05
MSC: 47N20
MSC: 58E30
idZBL: Zbl 1164.34361
idMR: MR2291762
.
Date available: 2009-09-24T11:36:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128092
.
Reference: [1] V. Anuradha, D. D. Hai and R. Shivaji: Existence results for superlinear semipositone BVP’s.Proc. A.M.S. 124 (1996), 757–763. MR 1317029
Reference: [2] A. V. Bitsadze: On the theory of nonlocal boundary value problems.Soviet Math. Dokl. 30 (1984), 8–10. Zbl 0586.30036, MR 0757061
Reference: [3] A. V. Bitsadze and A. A. Samarskii: Some elementary generalizations of linear elliptic boundary value problems.Dokl. Akad. Nauk SSSR 185 (1969), 739–740. MR 0247271
Reference: [4] D. R. Dunninger and H. Wang: Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions.Annales Polonici Math. LXIX.2 (1998), 155–165. MR 1641876
Reference: [5] W. P. Eloe and J. Henderson: Positive solutions and nonlinear multipoint conjugate eigenvalue problems.Electronic J. of Differential Equations 03 (1997), 1–11. MR 1428301
Reference: [6] L. H. Erbe and H. Wang: On the existence of positive solutions of ordinary differential equations.Proc. A.M.S. 120 (1994), 743–748. MR 1204373
Reference: [7] C. P. Gupta: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation.J. Math. Anal. Appl. 168 (1992), 540–551. Zbl 0763.34009, MR 1176010, 10.1016/0022-247X(92)90179-H
Reference: [8] C. Gupta, S. K. Ntouyas and P. Ch. Tsamatos: On an m-point boundary value problem for second order differential equations.Nonlinear Analysis TMA 23 (1994), 1427–1436. MR 1306681, 10.1016/0362-546X(94)90137-6
Reference: [9] C. Gupta: Solvability of a generalized multipoint boundary value problem of mixed type for second order ordinary differential equations.Proc. Dynamic Systems and Applications 2 (1996), 215–222. MR 1419531
Reference: [10] C. P. Gupta: A generalized multi-point nonlinear boundary value problem for a second order ordinary differential equation.Appl. Math. Comput 89 (1998), 133–146. MR 1491699, 10.1016/S0096-3003(97)81653-0
Reference: [11] J. Henderson and H. Wang: Positive solutions for nonlinear eigenvalue problems.J. Math. Anal. Appl. 208 (1997), 252–259. MR 1440355, 10.1006/jmaa.1997.5334
Reference: [12] V. A. Il’in and E. I. Moiseev: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects.Differ. Equ. 23 (1987), 803–811.
Reference: [13] V. A. Il’in and E. I. Moiseev: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator in its differential and finite difference aspects.Differ. Equ. 23 (1987), 979–987.
Reference: [14] G. L. Karakostas and P. Ch. Tsamatos: Positive solutions of a boundary-value problem for second order ordinary differential equations.Electronic Journal of Differential Equations 49 (2000 2000), 1–9. MR 1772734
Reference: [15] G. L. Karakostas and P. Ch. Tsamatos: Positive solutions for a nonlocal boundary-value problem with increasing response.Electronic Journal of Differential Equations 73 (2000), 1–8. MR 1801638
Reference: [16] G. L. Karakostas and P. Ch. Tsamatos: Multiple positive solutions for a nonlocal boundary-value problem with response function quiet at zero.Electronic Journal of Differential Equations 13 (2001), 1–10. MR 1811786
Reference: [17] G. L. Karakostas and P. Ch. Tsamatos: Existence of multiple solutions for a nonlocal boundary-value problem.Topol. Math. Nonl. Anal. 19 (2000), 109–121. MR 1921888
Reference: [18] M. A. Krasnoselski: Positive solutions of operator equations.Noordhoff, Groningen, 1964. MR 0181881
Reference: [19] R. Ma: Positive solutions for a nonlinear three-point boundary-value problem.Electronic Journal of Differential Equations 34 (1998), 1–8.
Reference: [20] R. Y. Ma and N. Castaneda: Existence of solutions of nonlinear m-point boundary value problems.J. Math. Anal. Appl. 256 (2001), 556–567. MR 1821757, 10.1006/jmaa.2000.7320
Reference: [21] R. Ma: Existence of positive solutions for second order m-point boundary value problems.Annales Polonici Mathematici LXXIX.3 (2002), 256–276. Zbl 1055.34025, MR 1957802
Reference: [22] J. Mawhin: Problèmes de Dirichlet Variationnels Non Linéares.Les Presses de l’Université de Montréal (1987). MR 0906453
Reference: [23] A. Nowakowski: A new variational principle and duality for periodic solutions of Hamilton’s equations.J. Differential Eqns. 97 (1992), 174–188. Zbl 0759.34039, MR 1161317, 10.1016/0022-0396(92)90089-6
Reference: [24] A. Nowakowski and A. Orpel: Positive solutions for a nonlocal boundary-value problem with vector-valued response.Electronic J. of Differential Equations 46 (2002), 1–15. MR 1907722
Reference: [25] P. H. Rabinowitz: Minimax Methods in Critical Points Theory with Applications to Differential Equations.AMS, Providence, 1986. MR 0845785
Reference: [26] J. R. L. Webb: Positive solutions of some three-point boundary value problems via fixed point theory.Nonlinear Anal. 47 (2001), 4319–4332. MR 1975828, 10.1016/S0362-546X(01)00547-8
Reference: [27] H. Wang: On the existence of positive solutions for semilinear elliptic equations in annulus.J. Differential Equation 109 (1994), 1–4. MR 1272398, 10.1006/jdeq.1994.1042
Reference: [28] M. Willem: Minimax Theorems.Progress in Nonlinear Differential Equations and Their Applications. Basel, Boston, Berlin: Birkhäuser, Vol. 24, 1996. Zbl 0856.49001, MR 1400007
.

Files

Files Size Format View
CzechMathJ_56-2006-2_27.pdf 397.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo