Title:
|
On the existence of multiple solutions for a nonlocal BVP with vector-valued response (English) |
Author:
|
Nowakowski, Andrzej |
Author:
|
Orpel, Aleksandra |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
621-640 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The existence of positive solutions for a nonlocal boundary-value problem with vector-valued response is investigated. We develop duality and variational principles for this problem. Our variational approach enables us to approximate solutions and give a measure of a duality gap between the primal and dual functional for minimizing sequences. (English) |
Keyword:
|
nonlocal boundary-value problems |
Keyword:
|
positive solutions |
Keyword:
|
duality method |
Keyword:
|
variational method |
MSC:
|
34B10 |
MSC:
|
34B15 |
MSC:
|
34B18 |
MSC:
|
47J05 |
MSC:
|
47N20 |
MSC:
|
58E30 |
idZBL:
|
Zbl 1164.34361 |
idMR:
|
MR2291762 |
. |
Date available:
|
2009-09-24T11:36:16Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128092 |
. |
Reference:
|
[1] V. Anuradha, D. D. Hai and R. Shivaji: Existence results for superlinear semipositone BVP’s.Proc. A.M.S. 124 (1996), 757–763. MR 1317029 |
Reference:
|
[2] A. V. Bitsadze: On the theory of nonlocal boundary value problems.Soviet Math. Dokl. 30 (1984), 8–10. Zbl 0586.30036, MR 0757061 |
Reference:
|
[3] A. V. Bitsadze and A. A. Samarskii: Some elementary generalizations of linear elliptic boundary value problems.Dokl. Akad. Nauk SSSR 185 (1969), 739–740. MR 0247271 |
Reference:
|
[4] D. R. Dunninger and H. Wang: Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions.Annales Polonici Math. LXIX.2 (1998), 155–165. MR 1641876 |
Reference:
|
[5] W. P. Eloe and J. Henderson: Positive solutions and nonlinear multipoint conjugate eigenvalue problems.Electronic J. of Differential Equations 03 (1997), 1–11. MR 1428301 |
Reference:
|
[6] L. H. Erbe and H. Wang: On the existence of positive solutions of ordinary differential equations.Proc. A.M.S. 120 (1994), 743–748. MR 1204373 |
Reference:
|
[7] C. P. Gupta: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation.J. Math. Anal. Appl. 168 (1992), 540–551. Zbl 0763.34009, MR 1176010, 10.1016/0022-247X(92)90179-H |
Reference:
|
[8] C. Gupta, S. K. Ntouyas and P. Ch. Tsamatos: On an m-point boundary value problem for second order differential equations.Nonlinear Analysis TMA 23 (1994), 1427–1436. MR 1306681, 10.1016/0362-546X(94)90137-6 |
Reference:
|
[9] C. Gupta: Solvability of a generalized multipoint boundary value problem of mixed type for second order ordinary differential equations.Proc. Dynamic Systems and Applications 2 (1996), 215–222. MR 1419531 |
Reference:
|
[10] C. P. Gupta: A generalized multi-point nonlinear boundary value problem for a second order ordinary differential equation.Appl. Math. Comput 89 (1998), 133–146. MR 1491699, 10.1016/S0096-3003(97)81653-0 |
Reference:
|
[11] J. Henderson and H. Wang: Positive solutions for nonlinear eigenvalue problems.J. Math. Anal. Appl. 208 (1997), 252–259. MR 1440355, 10.1006/jmaa.1997.5334 |
Reference:
|
[12] V. A. Il’in and E. I. Moiseev: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects.Differ. Equ. 23 (1987), 803–811. |
Reference:
|
[13] V. A. Il’in and E. I. Moiseev: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator in its differential and finite difference aspects.Differ. Equ. 23 (1987), 979–987. |
Reference:
|
[14] G. L. Karakostas and P. Ch. Tsamatos: Positive solutions of a boundary-value problem for second order ordinary differential equations.Electronic Journal of Differential Equations 49 (2000 2000), 1–9. MR 1772734 |
Reference:
|
[15] G. L. Karakostas and P. Ch. Tsamatos: Positive solutions for a nonlocal boundary-value problem with increasing response.Electronic Journal of Differential Equations 73 (2000), 1–8. MR 1801638 |
Reference:
|
[16] G. L. Karakostas and P. Ch. Tsamatos: Multiple positive solutions for a nonlocal boundary-value problem with response function quiet at zero.Electronic Journal of Differential Equations 13 (2001), 1–10. MR 1811786 |
Reference:
|
[17] G. L. Karakostas and P. Ch. Tsamatos: Existence of multiple solutions for a nonlocal boundary-value problem.Topol. Math. Nonl. Anal. 19 (2000), 109–121. MR 1921888 |
Reference:
|
[18] M. A. Krasnoselski: Positive solutions of operator equations.Noordhoff, Groningen, 1964. MR 0181881 |
Reference:
|
[19] R. Ma: Positive solutions for a nonlinear three-point boundary-value problem.Electronic Journal of Differential Equations 34 (1998), 1–8. |
Reference:
|
[20] R. Y. Ma and N. Castaneda: Existence of solutions of nonlinear m-point boundary value problems.J. Math. Anal. Appl. 256 (2001), 556–567. MR 1821757, 10.1006/jmaa.2000.7320 |
Reference:
|
[21] R. Ma: Existence of positive solutions for second order m-point boundary value problems.Annales Polonici Mathematici LXXIX.3 (2002), 256–276. Zbl 1055.34025, MR 1957802 |
Reference:
|
[22] J. Mawhin: Problèmes de Dirichlet Variationnels Non Linéares.Les Presses de l’Université de Montréal (1987). MR 0906453 |
Reference:
|
[23] A. Nowakowski: A new variational principle and duality for periodic solutions of Hamilton’s equations.J. Differential Eqns. 97 (1992), 174–188. Zbl 0759.34039, MR 1161317, 10.1016/0022-0396(92)90089-6 |
Reference:
|
[24] A. Nowakowski and A. Orpel: Positive solutions for a nonlocal boundary-value problem with vector-valued response.Electronic J. of Differential Equations 46 (2002), 1–15. MR 1907722 |
Reference:
|
[25] P. H. Rabinowitz: Minimax Methods in Critical Points Theory with Applications to Differential Equations.AMS, Providence, 1986. MR 0845785 |
Reference:
|
[26] J. R. L. Webb: Positive solutions of some three-point boundary value problems via fixed point theory.Nonlinear Anal. 47 (2001), 4319–4332. MR 1975828, 10.1016/S0362-546X(01)00547-8 |
Reference:
|
[27] H. Wang: On the existence of positive solutions for semilinear elliptic equations in annulus.J. Differential Equation 109 (1994), 1–4. MR 1272398, 10.1006/jdeq.1994.1042 |
Reference:
|
[28] M. Willem: Minimax Theorems.Progress in Nonlinear Differential Equations and Their Applications. Basel, Boston, Berlin: Birkhäuser, Vol. 24, 1996. Zbl 0856.49001, MR 1400007 |
. |