Title:
|
Positive vector measures with given marginals (English) |
Author:
|
Khurana, Surjit Singh |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
613-619 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Suppose $E$ is an ordered locally convex space, $X_{1} $ and $X_{2} $ Hausdorff completely regular spaces and $Q$ a uniformly bounded, convex and closed subset of $ M_{t}^{+}(X_{1} \times X_{2}, E) $. For $ i=1,2 $, let $ \mu _{i} \in M_{t}^{+}(X_{i}, E) $. Then, under some topological and order conditions on $E$, necessary and sufficient conditions are established for the existence of an element in $Q$, having marginals $ \mu _{1} $ and $ \mu _{2}$. (English) |
Keyword:
|
ordered locally convex space |
Keyword:
|
order convergence |
Keyword:
|
marginals |
MSC:
|
28B05 |
MSC:
|
28C05 |
MSC:
|
46E10 |
MSC:
|
46G10 |
MSC:
|
60B05 |
idZBL:
|
Zbl 1164.60306 |
idMR:
|
MR2291761 |
. |
Date available:
|
2009-09-24T11:36:08Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128091 |
. |
Reference:
|
[1] C. D. Aliprantis and O. Burkinshaw: Positive Operators.Academic Press, 1985. MR 0809372 |
Reference:
|
[2] J. Diestel and J. J. Uhl: Vector Measures.Amer. Math. Soc. Surveys, Vol. 15, Amer. Math. Soc., 1977. MR 0453964 |
Reference:
|
[3] L. Drewnowski: Topological rings of sets, continuous set functions, integration I, II.Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 20 (1972), 269–276. MR 0306432 |
Reference:
|
[4] E. Hewitt and K. Stromberg: Real and Abstract Analysis.Springer-Verlag, 1965. MR 0367121 |
Reference:
|
[5] A. Hirshberg and R. M. Shortt: A version of Strassen’s theorem for vector-valued measures.Proc. Amer. Math. Soc. 126 (1998), 1669–1671. MR 1443832, 10.1090/S0002-9939-98-04236-1 |
Reference:
|
[6] Hoffmann-Jorgensen: Probability in Banach spaces.vol. 598, Lecture Notes in Math., Springer-Verlag, 1977, pp. 1–186. MR 0461610 |
Reference:
|
[7] Jun Kawabe: A type of Strassen’s theorem for positive vector measures in dual spaces.Proc. Amer. Math. Soc. 128 (2000), 3291–3300. MR 1670387, 10.1090/S0002-9939-00-05384-3 |
Reference:
|
[8] S. S. Khurana: Extension and regularity of group-valued Baire measures.Bull. Acad. Polon. Sc., Ser. Math. Astro. Phys. 22 (1974), 891–895. Zbl 0275.28012, MR 0393412 |
Reference:
|
[9] S. S. Khurana: Topologies on spaces of continuous vector-valued functions.Trans. Amer. Math. Soc. 241 (1978), 195–211. MR 0492297, 10.1090/S0002-9947-1978-0492297-X |
Reference:
|
[10] I. Kluvanek and G. Knowles: Vector Measures and Control Systems.North-Holland, 1976. MR 0499068 |
Reference:
|
[11] D. R. Lewis: Integration with respect to vector measures.Pac. J. Math. 33 (1970), 157–165. Zbl 0195.14303, MR 0259064, 10.2140/pjm.1970.33.157 |
Reference:
|
[12] Peter Meyer-Nieberg: Banach Lattices.Springer-Verlag, 1991. MR 1128093 |
Reference:
|
[13] H. H. Schaefer: Topological Vector Spaces.Springer Verlag, 1986. MR 0342978 |
Reference:
|
[14] V. Strassen: The existence of probability measures with given marginals.Ann. Math. Statist. 36 (1965), 423–439. Zbl 0135.18701, MR 0177430, 10.1214/aoms/1177700153 |
Reference:
|
[15] V. S. Varadarajan: Measures on topological spaces.Amer. Math. Soc. Transl. 48 (1965), 161–228. 10.1090/trans2/048/10 |
. |