Previous |  Up |  Next

Article

Title: Positive vector measures with given marginals (English)
Author: Khurana, Surjit Singh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 613-619
Summary lang: English
.
Category: math
.
Summary: Suppose $E$ is an ordered locally convex space, $X_{1} $ and $X_{2} $ Hausdorff completely regular spaces and $Q$ a uniformly bounded, convex and closed subset of $ M_{t}^{+}(X_{1} \times X_{2}, E) $. For $ i=1,2 $, let $ \mu _{i} \in M_{t}^{+}(X_{i}, E) $. Then, under some topological and order conditions on $E$, necessary and sufficient conditions are established for the existence of an element in $Q$, having marginals $ \mu _{1} $ and $ \mu _{2}$. (English)
Keyword: ordered locally convex space
Keyword: order convergence
Keyword: marginals
MSC: 28B05
MSC: 28C05
MSC: 46E10
MSC: 46G10
MSC: 60B05
idZBL: Zbl 1164.60306
idMR: MR2291761
.
Date available: 2009-09-24T11:36:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128091
.
Reference: [1] C. D. Aliprantis and O. Burkinshaw: Positive Operators.Academic Press, 1985. MR 0809372
Reference: [2] J. Diestel and J. J. Uhl: Vector Measures.Amer. Math. Soc. Surveys, Vol. 15, Amer. Math. Soc., 1977. MR 0453964
Reference: [3] L. Drewnowski: Topological rings of sets, continuous set functions, integration I, II.Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 20 (1972), 269–276. MR 0306432
Reference: [4] E. Hewitt and K. Stromberg: Real and Abstract Analysis.Springer-Verlag, 1965. MR 0367121
Reference: [5] A. Hirshberg and R. M. Shortt: A version of Strassen’s theorem for vector-valued measures.Proc. Amer. Math. Soc. 126 (1998), 1669–1671. MR 1443832, 10.1090/S0002-9939-98-04236-1
Reference: [6] Hoffmann-Jorgensen: Probability in Banach spaces.vol. 598, Lecture Notes in Math., Springer-Verlag, 1977, pp. 1–186. MR 0461610
Reference: [7] Jun Kawabe: A type of Strassen’s theorem for positive vector measures in dual spaces.Proc. Amer. Math. Soc. 128 (2000), 3291–3300. MR 1670387, 10.1090/S0002-9939-00-05384-3
Reference: [8] S. S. Khurana: Extension and regularity of group-valued Baire measures.Bull. Acad. Polon. Sc., Ser. Math. Astro. Phys. 22 (1974), 891–895. Zbl 0275.28012, MR 0393412
Reference: [9] S. S. Khurana: Topologies on spaces of continuous vector-valued functions.Trans. Amer. Math. Soc. 241 (1978), 195–211. MR 0492297, 10.1090/S0002-9947-1978-0492297-X
Reference: [10] I. Kluvanek and G. Knowles: Vector Measures and Control Systems.North-Holland, 1976. MR 0499068
Reference: [11] D. R. Lewis: Integration with respect to vector measures.Pac. J. Math. 33 (1970), 157–165. Zbl 0195.14303, MR 0259064, 10.2140/pjm.1970.33.157
Reference: [12] Peter Meyer-Nieberg: Banach Lattices.Springer-Verlag, 1991. MR 1128093
Reference: [13] H. H. Schaefer: Topological Vector Spaces.Springer Verlag, 1986. MR 0342978
Reference: [14] V. Strassen: The existence of probability measures with given marginals.Ann. Math. Statist. 36 (1965), 423–439. Zbl 0135.18701, MR 0177430, 10.1214/aoms/1177700153
Reference: [15] V. S. Varadarajan: Measures on topological spaces.Amer. Math. Soc. Transl. 48 (1965), 161–228. 10.1090/trans2/048/10
.

Files

Files Size Format View
CzechMathJ_56-2006-2_26.pdf 317.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo