Previous |  Up |  Next

Article

Title: Conformally flat pseudo-symmetric spaces of constant type (English)
Author: Calvaruso, G.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 649-657
Summary lang: English
.
Category: math
.
Summary: We give the complete classification of conformally flat pseudo-symmetric spaces of constant type. (English)
Keyword: conformally flat manifolds
Keyword: pseudo-symmetric spaces
MSC: 53C15
MSC: 53C25
MSC: 53C35
idZBL: Zbl 1164.53339
idMR: MR2291764
.
Date available: 2009-09-24T11:36:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128094
.
Reference: [1] E. Boeckx, O. Kowalski and L. Vanhecke: Riemannian Manifolds of Conullity Two.World Scientific, 1996. MR 1462887
Reference: [2] G. Calvaruso: Conformally flat semi-symmetric spaces.Arch. Math. Brno 41 (2005), 27–36. Zbl 1114.53027, MR 2142141
Reference: [3] G. Calvaruso and L. Vanhecke: Special ball-homogeneous spaces.Z. Anal. Anwendungen 16 (1997), 789–800. MR 1615680, 10.4171/ZAA/792
Reference: [4] R. Deszcz: On pseudo-symmetric spaces.Bull. Soc. Math. Belgium, Série A 44 (1992), 1–34.
Reference: [5] N. Hashimoto and M. Sekizawa: Three-dimensional conformally flat pseudo-symmetric spaces of constant type.Arch. Math. (Brno) 36 (2000), 279–286. MR 1811172
Reference: [6] O. Kowalski and M. Sekizawa: Pseudo-symmetric spaces of constant type in dimension three.Rendiconti di Matematica, Serie VII 17 (1997), 477–512. MR 1608724
Reference: [7] R. S. Kulkarni: Curvature structures and conformal transformations.J. Differential Geom. 4 (1970), 425–451. Zbl 0206.24403, MR 0284949, 10.4310/jdg/1214429639
Reference: [8] P. Ryan: A note on conformally flat spaces with constant scalar curvature.Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971 2 (1972), 115–124. Zbl 0267.53024, MR 0487882
Reference: [9] Z. I. Szabó: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, I, the local version.J. Diff. Geom. 17 (1982), 531–582. MR 0683165, 10.4310/jdg/1214437486
Reference: [10] H. Takagi: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$.Tôhoku Math. J. 24 (1972), 105–108. MR 0319109, 10.2748/tmj/1178241595
Reference: [11] H. Takagi: Conformally flat Riemannian manifolds admitting a transitive group of isometries.Tohôku Math. J. 27 (1975), 103–110. Zbl 0323.53037, MR 0442852, 10.2748/tmj/1178241040
.

Files

Files Size Format View
CzechMathJ_56-2006-2_29.pdf 318.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo