Title:
|
Conformally flat pseudo-symmetric spaces of constant type (English) |
Author:
|
Calvaruso, G. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
649-657 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give the complete classification of conformally flat pseudo-symmetric spaces of constant type. (English) |
Keyword:
|
conformally flat manifolds |
Keyword:
|
pseudo-symmetric spaces |
MSC:
|
53C15 |
MSC:
|
53C25 |
MSC:
|
53C35 |
idZBL:
|
Zbl 1164.53339 |
idMR:
|
MR2291764 |
. |
Date available:
|
2009-09-24T11:36:35Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128094 |
. |
Reference:
|
[1] E. Boeckx, O. Kowalski and L. Vanhecke: Riemannian Manifolds of Conullity Two.World Scientific, 1996. MR 1462887 |
Reference:
|
[2] G. Calvaruso: Conformally flat semi-symmetric spaces.Arch. Math. Brno 41 (2005), 27–36. Zbl 1114.53027, MR 2142141 |
Reference:
|
[3] G. Calvaruso and L. Vanhecke: Special ball-homogeneous spaces.Z. Anal. Anwendungen 16 (1997), 789–800. MR 1615680, 10.4171/ZAA/792 |
Reference:
|
[4] R. Deszcz: On pseudo-symmetric spaces.Bull. Soc. Math. Belgium, Série A 44 (1992), 1–34. |
Reference:
|
[5] N. Hashimoto and M. Sekizawa: Three-dimensional conformally flat pseudo-symmetric spaces of constant type.Arch. Math. (Brno) 36 (2000), 279–286. MR 1811172 |
Reference:
|
[6] O. Kowalski and M. Sekizawa: Pseudo-symmetric spaces of constant type in dimension three.Rendiconti di Matematica, Serie VII 17 (1997), 477–512. MR 1608724 |
Reference:
|
[7] R. S. Kulkarni: Curvature structures and conformal transformations.J. Differential Geom. 4 (1970), 425–451. Zbl 0206.24403, MR 0284949, 10.4310/jdg/1214429639 |
Reference:
|
[8] P. Ryan: A note on conformally flat spaces with constant scalar curvature.Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971 2 (1972), 115–124. Zbl 0267.53024, MR 0487882 |
Reference:
|
[9] Z. I. Szabó: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, I, the local version.J. Diff. Geom. 17 (1982), 531–582. MR 0683165, 10.4310/jdg/1214437486 |
Reference:
|
[10] H. Takagi: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$.Tôhoku Math. J. 24 (1972), 105–108. MR 0319109, 10.2748/tmj/1178241595 |
Reference:
|
[11] H. Takagi: Conformally flat Riemannian manifolds admitting a transitive group of isometries.Tohôku Math. J. 27 (1975), 103–110. Zbl 0323.53037, MR 0442852, 10.2748/tmj/1178241040 |
. |