Previous |  Up |  Next

Article

Title: Traceless component of the conformal curvature tensor in Kähler manifold (English)
Author: Funabashi, Shoichi
Author: Kim, Hyang Sook
Author: Kim, Young-Mi
Author: Pak, Jin Suk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 857-874
Summary lang: English
.
Category: math
.
Summary: We investigate the traceless component of the conformal curvature tensor defined by (2.1) in Kähler manifolds of dimension $\ge 4$, and show that the traceless component is invariant under concircular change. In particular, we determine Kähler manifolds with vanishing traceless component and improve some theorems (for example, [4, pp. 313–317]) concerning the conformal curvature tensor and the spectrum of the Laplacian acting on $p$ $(0\le p\le 2)$-forms on the manifold by using the traceless component. (English)
Keyword: Kähler manifold
Keyword: conformal tensor field
Keyword: trace decomposition
Keyword: concircular transformation
Keyword: spectrum
MSC: 53C55
MSC: 58J50
idZBL: Zbl 1164.53382
idMR: MR2261658
.
Date available: 2009-09-24T11:38:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128111
.
Reference: [1] M. Berger, P. Gauduchon et E. Mazet: Le Spectre d’une Variété Riemannienne.Lecture Notes in Mathematics 194, Springer-Verlag, , 1971. MR 0282313
Reference: [2] H. Kitahara, K. Matsuo and J. S. Pak: A conformal curvature tensor field on hermitian manifolds; Appendium.J. Korean Math. Soc.; Bull. Korean Math. Soc. 27 (1990), 7–17; 27–30. MR 1061071
Reference: [3] D. Krupka: The trace decomposition problem.Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry 36 (1995), 303–315. Zbl 0839.15024, MR 1358429
Reference: [4] J. S. Pak, K.-H. Cho and J.-H. Kwon: Conformal curvature tensor field and spectrum of the Laplacian in Kaehlerian manifolds.Bull. Korean Math. Soc. 32 (1995), 309–319. MR 1356087
Reference: [5] V. K. Patodi: Curvature and the fundamental solution of the heat operator.J. Indian Math. Soc. 34 (1970), 269–285. MR 0488181
Reference: [6] S. Tachibana: Riemannian Geometry.Asakura Shoten, Tokyo, 1967. (Japanese)
Reference: [7] S. Tanno: Eigenvalues of the Laplacian of Riemannian manifolds.Tôhoku Math. J. 25 (1973), 391–403. Zbl 0266.53033, MR 0334086, 10.2748/tmj/1178241341
Reference: [8] Gr. Tsagas: On the spectrum of the Laplace operator for the exterior 2-forms.Tensor N. S. 33 (1979), 94–96. Zbl 0408.53026, MR 0577217
Reference: [9] S. Yamaguchi and G. Chuman: Eigenvalues of the Laplacian of Sasakian manifolds.TRU Math. 15 (1979), 31–41. MR 0564366
Reference: [10] K. Yano: Differential Geometry on complex and almost complex spaces.Pergamon Press, New York, 1965. Zbl 0127.12405, MR 0187181
Reference: [11] K. Yano and S. Ishihara: Kaehlerian manifolds with constant scalar curvature whose Bochner curvature tensor vanishes.Hokkaido Math. J. 3 (1974), 297–304. MR 0362170, 10.14492/hokmj/1381758810
.

Files

Files Size Format View
CzechMathJ_56-2006-3_5.pdf 376.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo