Title:
|
Traceless component of the conformal curvature tensor in Kähler manifold (English) |
Author:
|
Funabashi, Shoichi |
Author:
|
Kim, Hyang Sook |
Author:
|
Kim, Young-Mi |
Author:
|
Pak, Jin Suk |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
857-874 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate the traceless component of the conformal curvature tensor defined by (2.1) in Kähler manifolds of dimension $\ge 4$, and show that the traceless component is invariant under concircular change. In particular, we determine Kähler manifolds with vanishing traceless component and improve some theorems (for example, [4, pp. 313–317]) concerning the conformal curvature tensor and the spectrum of the Laplacian acting on $p$ $(0\le p\le 2)$-forms on the manifold by using the traceless component. (English) |
Keyword:
|
Kähler manifold |
Keyword:
|
conformal tensor field |
Keyword:
|
trace decomposition |
Keyword:
|
concircular transformation |
Keyword:
|
spectrum |
MSC:
|
53C55 |
MSC:
|
58J50 |
idZBL:
|
Zbl 1164.53382 |
idMR:
|
MR2261658 |
. |
Date available:
|
2009-09-24T11:38:46Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128111 |
. |
Reference:
|
[1] M. Berger, P. Gauduchon et E. Mazet: Le Spectre d’une Variété Riemannienne.Lecture Notes in Mathematics 194, Springer-Verlag, , 1971. MR 0282313 |
Reference:
|
[2] H. Kitahara, K. Matsuo and J. S. Pak: A conformal curvature tensor field on hermitian manifolds; Appendium.J. Korean Math. Soc.; Bull. Korean Math. Soc. 27 (1990), 7–17; 27–30. MR 1061071 |
Reference:
|
[3] D. Krupka: The trace decomposition problem.Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry 36 (1995), 303–315. Zbl 0839.15024, MR 1358429 |
Reference:
|
[4] J. S. Pak, K.-H. Cho and J.-H. Kwon: Conformal curvature tensor field and spectrum of the Laplacian in Kaehlerian manifolds.Bull. Korean Math. Soc. 32 (1995), 309–319. MR 1356087 |
Reference:
|
[5] V. K. Patodi: Curvature and the fundamental solution of the heat operator.J. Indian Math. Soc. 34 (1970), 269–285. MR 0488181 |
Reference:
|
[6] S. Tachibana: Riemannian Geometry.Asakura Shoten, Tokyo, 1967. (Japanese) |
Reference:
|
[7] S. Tanno: Eigenvalues of the Laplacian of Riemannian manifolds.Tôhoku Math. J. 25 (1973), 391–403. Zbl 0266.53033, MR 0334086, 10.2748/tmj/1178241341 |
Reference:
|
[8] Gr. Tsagas: On the spectrum of the Laplace operator for the exterior 2-forms.Tensor N. S. 33 (1979), 94–96. Zbl 0408.53026, MR 0577217 |
Reference:
|
[9] S. Yamaguchi and G. Chuman: Eigenvalues of the Laplacian of Sasakian manifolds.TRU Math. 15 (1979), 31–41. MR 0564366 |
Reference:
|
[10] K. Yano: Differential Geometry on complex and almost complex spaces.Pergamon Press, New York, 1965. Zbl 0127.12405, MR 0187181 |
Reference:
|
[11] K. Yano and S. Ishihara: Kaehlerian manifolds with constant scalar curvature whose Bochner curvature tensor vanishes.Hokkaido Math. J. 3 (1974), 297–304. MR 0362170, 10.14492/hokmj/1381758810 |
. |