Previous |  Up |  Next

Article

Title: On the inertia sets of some symmetric sign patterns (English)
Author: Fonseca, C. M. da
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 875-883
Summary lang: English
.
Category: math
.
Summary: A matrix whose entries consist of elements from the set $\lbrace +,-,0\rbrace $ is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices. (English)
Keyword: inertia
Keyword: sign pattern matrix
Keyword: tridiagonal matrix
MSC: 15A18
MSC: 15A36
MSC: 15A48
idZBL: Zbl 1164.15318
idMR: MR2261659
.
Date available: 2009-09-24T11:38:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128112
.
Reference: [1] B. E. Cain and E. Marques de Sá: The inertia of Hermitian matrices with a prescribed $2\times 2$ block decomposition.Linear and Multilinear Algebra 31 (1992), 119–130. MR 1199047, 10.1080/03081089208818128
Reference: [2] B. E. Cain and E. Marques de Sá: The inertia of certain skew-triangular block matrices.Linear Algebra Appl. 160 (1992), 75–85. MR 1137844
Reference: [3] C. Eschenbach and C. R. Johnson: A combinatorial converse to the Perron-Frobenius theorem.Linear Algebra Appl. 136 (1990), 173–180. MR 1061544
Reference: [4] C. Eschenbach and C. R. Johnson: Sign patterns that require real, nonreal or pure imaginary eigenvalues.Linear and Multilinear Algebra 29 (1991), 299–311. MR 1119461, 10.1080/03081089108818079
Reference: [5] Y. Gao and Y. Shao: The inertia set of nonnegative symmetric sign pattern with zero diagonal.Czechoslovak Math. J. 53 (2003), 925–934. MR 2018840, 10.1023/B:CMAJ.0000024531.10708.9f
Reference: [6] F. J. Hall and Z. Li: Inertia sets of symmetric sign pattern matrices.Numer. Math. J. Chinese Univ. (English Ser.) 10 (2001), 226–240. MR 1884971
Reference: [7] F. J. Hall, Z. Li and Di Wang: Symmetric sign pattern matrices that require unique inertia.Linear Algebra Appl. 338 (2001), 153–169. MR 1861120
Reference: [8] R. A. Horn and C. R. Johnson: Matrix Analysis, Cambridge University Press, Cambridge.1985. MR 0832183
Reference: [9] C. Jeffries and C. R. Johnson: Some sign patterns that preclude matrix stability.SIAM J. Matrix Anal. Appl. 9 (1988), 19–25. MR 0938055
.

Files

Files Size Format View
CzechMathJ_56-2006-3_6.pdf 285.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo