Previous |  Up |  Next

Article

Title: Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$ (English)
Author: Montalvo, F.
Author: Pulgarín, A. A.
Author: Requejo, B.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 903-918
Summary lang: English
.
Category: math
.
Summary: Let $A$ be a uniformly closed and locally m-convex $\Phi $-algebra. We obtain internal conditions on $A$ stated in terms of its closed ideals for $A$ to be isomorphic and homeomorphic to $C_k(X)$, the $\Phi $-algebra of all the real continuous functions on a normal topological space $X$ endowed with the compact convergence topology. (English)
Keyword: locally m-convex algebra
Keyword: $\Phi $-algebra
Keyword: compact convergence topology
MSC: 06B30
MSC: 46H05
MSC: 46H15
MSC: 54H12
MSC: 54H13
idZBL: Zbl 1164.46339
idMR: MR2261662
.
Date available: 2009-09-24T11:39:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128115
.
Reference: [1] F. W.  Anderson: Approximation in systems of real-valued continuous functions.Trans. Am. Math. Soc. 103 (1962), 249–271. Zbl 0175.14301, MR 0136976, 10.1090/S0002-9947-1962-0136976-0
Reference: [2] R.  Bkouche: Couples spectraux et faisceaux associés. Applications aux anneaux de fonctions.Bull. Soc. Math. France 98 (1970), 253–295. Zbl 0201.37204, MR 0477780, 10.24033/bsmf.1702
Reference: [3] W. A. Feldman, J. F.  Porter: The order topology for function lattices and realcompactness.Internat. J. Math. Math. Sci. 4 (1981), 289–304. MR 0613251, 10.1155/S0161171281000173
Reference: [4] I. M.  Gelfand: Normierte ringe.Rec. Math. Moscou, n. Ser. 9 (1941), 3–24. Zbl 0024.32002, MR 0004726
Reference: [5] L.  Gillman, M.  Jerison: Rings of Continuous Functions. Grad. Texts in Math. Vol. 43.Springer-Verlag, New York, 1960. MR 0116199
Reference: [6] A. W. Hager: On inverse-closed subalgebras of  $C(X)$.Proc. London Math. Soc. 19 (1969), 233–257. Zbl 0169.54005, MR 0244948
Reference: [7] M. Henriksen: Unsolved problems on algebraic aspects of  $C(X)$.In: Rings of Continuous Functions. Lecture Notes in Pure and Appl. Math. Vol. 95, M.  Dekker, New York, 1985, pp. 195–202. Zbl 0587.54028, MR 0789271
Reference: [8] M. Henriksen, D. J.  Johnson: On the structure of a class of Archimedean lattice-ordered algebras.Fundam. Math. 50 (1961), 73–94. MR 0133698, 10.4064/fm-50-1-73-94
Reference: [9] C. B.  Huijsmans, B. de Pagter: Ideal theory in $f$-algebras.Trans. Am. Math. Soc. 269 (1982), 225–245. MR 0637036
Reference: [10] D. J. Johnson: A structure theory for a class of lattice-ordered rings.Acta Math. 104 (1960), 163–215. Zbl 0094.25305, MR 0125141, 10.1007/BF02546389
Reference: [11] F.  Montalvo, A.  Pulgarín, B. Requejo: Order topologies on $l$-algebras.Topology Appl. 137 (2004), 225–236. MR 2057889, 10.1016/S0166-8641(03)00212-8
Reference: [12] P. D. Morris, D. E.  Wulbert: Functional representation of topological algebras.Pac. J. Math. 22 (1967), 323–337. MR 0213876
Reference: [13] J.  Muñoz, J. M.  Ortega: Sobre las álgebras localmente convexas.Collect. Math. 20 (1969), 127–149.
Reference: [14] D.  Plank: Closed $l$-ideals in a class of lattice-ordered algebras. Ill.J. Math. 15 (1971), 515–524. MR 0280423
Reference: [15] A.  Pulgarín: A characterization of  $C_k(X)$ as a Fréchet $f$-algebra.Acta Math. Hung. 88 (2000), 133–138. Zbl 0988.54018, 10.1023/A:1006764913661
Reference: [16] B. Requejo: A characterization of the topology of compact convergence on  $C(X)$.Topology Appl. 77 (1997), 213–219. MR 1451653, 10.1016/S0166-8641(96)00143-5
Reference: [17] B. Requejo: Localización Topológica.Publ. Dpto. Mat. Unex, Vol. 32, Badajoz, 1995. MR 1387595
Reference: [18] H. H.  Schaefer: Topological Vector Spaces. Grad. Text in Math. Vol. 3.Springer-Verlag, New York, 1971. MR 0342978
Reference: [19] H.  Tietze: Über Funktionen, die auf einer abgeschlossenen Menge stetig sind.J. für Math. 145 (1914), 9–14.
Reference: [20] S.  Warner: The topology of compact convergence on continuous function spaces.Duke Math. J. 25 (1958), 265–282. Zbl 0081.32802, MR 0102735
.

Files

Files Size Format View
CzechMathJ_56-2006-3_9.pdf 381.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo