Title:
|
Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$ (English) |
Author:
|
Montalvo, F. |
Author:
|
Pulgarín, A. A. |
Author:
|
Requejo, B. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
903-918 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $A$ be a uniformly closed and locally m-convex $\Phi $-algebra. We obtain internal conditions on $A$ stated in terms of its closed ideals for $A$ to be isomorphic and homeomorphic to $C_k(X)$, the $\Phi $-algebra of all the real continuous functions on a normal topological space $X$ endowed with the compact convergence topology. (English) |
Keyword:
|
locally m-convex algebra |
Keyword:
|
$\Phi $-algebra |
Keyword:
|
compact convergence topology |
MSC:
|
06B30 |
MSC:
|
46H05 |
MSC:
|
46H15 |
MSC:
|
54H12 |
MSC:
|
54H13 |
idZBL:
|
Zbl 1164.46339 |
idMR:
|
MR2261662 |
. |
Date available:
|
2009-09-24T11:39:21Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128115 |
. |
Reference:
|
[1] F. W. Anderson: Approximation in systems of real-valued continuous functions.Trans. Am. Math. Soc. 103 (1962), 249–271. Zbl 0175.14301, MR 0136976, 10.1090/S0002-9947-1962-0136976-0 |
Reference:
|
[2] R. Bkouche: Couples spectraux et faisceaux associés. Applications aux anneaux de fonctions.Bull. Soc. Math. France 98 (1970), 253–295. Zbl 0201.37204, MR 0477780, 10.24033/bsmf.1702 |
Reference:
|
[3] W. A. Feldman, J. F. Porter: The order topology for function lattices and realcompactness.Internat. J. Math. Math. Sci. 4 (1981), 289–304. MR 0613251, 10.1155/S0161171281000173 |
Reference:
|
[4] I. M. Gelfand: Normierte ringe.Rec. Math. Moscou, n. Ser. 9 (1941), 3–24. Zbl 0024.32002, MR 0004726 |
Reference:
|
[5] L. Gillman, M. Jerison: Rings of Continuous Functions. Grad. Texts in Math. Vol. 43.Springer-Verlag, New York, 1960. MR 0116199 |
Reference:
|
[6] A. W. Hager: On inverse-closed subalgebras of $C(X)$.Proc. London Math. Soc. 19 (1969), 233–257. Zbl 0169.54005, MR 0244948 |
Reference:
|
[7] M. Henriksen: Unsolved problems on algebraic aspects of $C(X)$.In: Rings of Continuous Functions. Lecture Notes in Pure and Appl. Math. Vol. 95, M. Dekker, New York, 1985, pp. 195–202. Zbl 0587.54028, MR 0789271 |
Reference:
|
[8] M. Henriksen, D. J. Johnson: On the structure of a class of Archimedean lattice-ordered algebras.Fundam. Math. 50 (1961), 73–94. MR 0133698, 10.4064/fm-50-1-73-94 |
Reference:
|
[9] C. B. Huijsmans, B. de Pagter: Ideal theory in $f$-algebras.Trans. Am. Math. Soc. 269 (1982), 225–245. MR 0637036 |
Reference:
|
[10] D. J. Johnson: A structure theory for a class of lattice-ordered rings.Acta Math. 104 (1960), 163–215. Zbl 0094.25305, MR 0125141, 10.1007/BF02546389 |
Reference:
|
[11] F. Montalvo, A. Pulgarín, B. Requejo: Order topologies on $l$-algebras.Topology Appl. 137 (2004), 225–236. MR 2057889, 10.1016/S0166-8641(03)00212-8 |
Reference:
|
[12] P. D. Morris, D. E. Wulbert: Functional representation of topological algebras.Pac. J. Math. 22 (1967), 323–337. MR 0213876 |
Reference:
|
[13] J. Muñoz, J. M. Ortega: Sobre las álgebras localmente convexas.Collect. Math. 20 (1969), 127–149. |
Reference:
|
[14] D. Plank: Closed $l$-ideals in a class of lattice-ordered algebras. Ill.J. Math. 15 (1971), 515–524. MR 0280423 |
Reference:
|
[15] A. Pulgarín: A characterization of $C_k(X)$ as a Fréchet $f$-algebra.Acta Math. Hung. 88 (2000), 133–138. Zbl 0988.54018, 10.1023/A:1006764913661 |
Reference:
|
[16] B. Requejo: A characterization of the topology of compact convergence on $C(X)$.Topology Appl. 77 (1997), 213–219. MR 1451653, 10.1016/S0166-8641(96)00143-5 |
Reference:
|
[17] B. Requejo: Localización Topológica.Publ. Dpto. Mat. Unex, Vol. 32, Badajoz, 1995. MR 1387595 |
Reference:
|
[18] H. H. Schaefer: Topological Vector Spaces. Grad. Text in Math. Vol. 3.Springer-Verlag, New York, 1971. MR 0342978 |
Reference:
|
[19] H. Tietze: Über Funktionen, die auf einer abgeschlossenen Menge stetig sind.J. für Math. 145 (1914), 9–14. |
Reference:
|
[20] S. Warner: The topology of compact convergence on continuous function spaces.Duke Math. J. 25 (1958), 265–282. Zbl 0081.32802, MR 0102735 |
. |