Previous |  Up |  Next

Article

Title: Limit points of eigenvalues of (di)graphs (English)
Author: Zhang, Fuji
Author: Chen, Zhibo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 895-902
Summary lang: English
.
Category: math
.
Summary: The study on limit points of eigenvalues of undirected graphs was initiated by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove: 1. Every real number is a limit point of eigenvalues of graphs. Every complex number is a limit point of eigenvalues of digraphs. 2. For a digraph $D$, the set of limit points of eigenvalues of iterated subdivision digraphs of $D$ is the unit circle in the complex plane if and only if $D$ has a directed cycle. 3. Every limit point of eigenvalues of a set $\mathcal {D}$ of digraphs (graphs) is a limit point of eigenvalues of a set $\ddot{\mathcal {D}}$ of bipartite digraphs (graphs), where $\ddot{\mathcal {D}}$ consists of the double covers of the members in $\mathcal {D}$. 4. Every limit point of eigenvalues of a set $\mathcal {D}$ of digraphs is a limit point of eigenvalues of line digraphs of the digraphs in $\mathcal {D}$. 5. If $M$ is a limit point of the largest eigenvalues of graphs, then $-M$ is a limit point of the smallest eigenvalues of graphs. (English)
Keyword: limit point
Keyword: eigenvalue of digraph (graph)
Keyword: double cover
Keyword: subdivision digraph
Keyword: line digraph
MSC: 05C50
MSC: 15A48
idZBL: Zbl 1164.05412
idMR: MR2261661
.
Date available: 2009-09-24T11:39:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128114
.
Reference: [1] J. A.  Bondy, U. S. R. Murty: Graph Theory with Applications.Macmilliam, London, 1976. MR 0411988
Reference: [2] D.  Cao D, H. Yuan: Graphs characterized by the second eigenvalue.J.  Graph Theory 17 (1993), 325–331. MR 1220993, 10.1002/jgt.3190170307
Reference: [3] D. Cao, H. Yuan: The distribution of eigenvalues of graphs.Linear Algebra Appl. 216 (1995), 211–224. MR 1319986, 10.1016/0024-3795(93)00135-M
Reference: [4] D. M. Cvetković, M. Doob, and H.  Sachs: Spectra of Graphs.Academic Press, New York, 1980, third edition Johann Ambrosius Barth Verlag 1995. MR 0572262
Reference: [5] D. M.  Cvetković, P.  Rowlinson: The largest eigenvalue of a graph: a survey.Linear and multilinear Algebra 28 (1990), 3–33. MR 1077731
Reference: [6] M.  Doob: The limit points of eigenvalues of graphs.Linear Algebra Appl. 114/115 (1989), 659–662. Zbl 0671.05050, MR 0986899
Reference: [7] M. Doob: Some new results on the limit points of eigenvalues of graphs.Abstracts Amer. Math. Soc. 12 (1991), 450.
Reference: [8] F.  Harary, R. Z.  Norman: Some properties of line digraphs.Rend. Circ. Mat. Palermo 9 (1960), 161–168. MR 0130839, 10.1007/BF02854581
Reference: [9] A. J. Hoffman: On limit points of spectral radii of non-negative symmetric integral matrices.Graph Theory and its Application. Lecture Notes in Math.  303, Y. Alavi et al. (eds.), Springer-Verlag, New York, 1972, pp. 165–172. Zbl 0297.15016, MR 0347860
Reference: [10] A. J.  Hoffman: On limit points of the least eigenvalue of a graph.Ars Combinatoria 3 (1977), 3–14. Zbl 0445.05067, MR 0498274
Reference: [11] F. R.  Gantmacher: Theory of Matrices, Vol.  I.AMS Chelsea Publishing, Providence, 1960.
Reference: [12] G.  Lin, F.  Zhang: On the characteristic polynomial of directed line graph and a type of cospectral directed digraph.KeXue TongBao (Chinese Sci. Bulletin) 22 (1983), 1348–1350. MR 0740127
Reference: [13] B.  Liu, H.  Lai: Matrices in Combinatorics and Graph Theory.Kluwer, Dordrecht, 2000.
Reference: [14] M.  Marcus, H. Minc: A Survey of Matrix Theory and Matrix Inequalities.Allyn and Bacon, Boston, 1964. MR 0162808
Reference: [15] J. B.  Shearer: On the distribution of the maximum eigenvalue of graphs.Linear Algebra and Appl. 114/115 (1989), 17–20. MR 0986863
Reference: [16] F.  Zhang, G. Lin, and J. Meng: The characteristic polynomials of digraphs formed by some unary operations.J.  Xinjiang Univ. 4 (1987), 1–6. MR 0924475
.

Files

Files Size Format View
CzechMathJ_56-2006-3_8.pdf 319.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo