Previous |  Up |  Next

Article

Title: Pták's characterization of reflexivity in tensor products (English)
Author: John, Kamil
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 923-931
Summary lang: English
.
Category: math
.
Summary: We characterize the reflexivity of the completed projective tensor products $X{\widetilde{\otimes }_\pi } Y$ of Banach spaces in terms of certain approximative biorthogonal systems. (English)
Keyword: reflexive Banach space
Keyword: biorthogonal system
Keyword: $\pi $-tensor product
MSC: 46B10
MSC: 46B28
idZBL: Zbl 1164.46308
idMR: MR2261664
.
Date available: 2009-09-24T11:39:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128117
.
Reference: [1] J.  Diestel: Sequences and Series in Banach Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1984. MR 0737004
Reference: [2] A.  Grothendieck: Produits tensoriels topologiques et espaces nucléaires.Mem. Am. Math. Soc. 16 (1955). Zbl 0123.30301, MR 0075539
Reference: [3] S.  Heinrich: On the reflexivity of the Banach space  $L(X,Y)$.Funkcional’nyi Analiz i ego Prilozheniya 8 (1974), 97–98. MR 0342991
Reference: [4] J. R.  Holub: Reflexivity of  $L(E,F)$.Proc. Amer. Math. Soc. 39 (1973), 175–177. Zbl 0262.46015, MR 0315407
Reference: [5] H.  Jarchow: Locally Convex Spaces.Teubner-Verlag, Stuttgart, 1981. Zbl 0466.46001, MR 0632257
Reference: [6] K.  John: $w^*$-basic sequences and reflexivity of Banach spaces.Czechoslovak Math. J 55 (2005), 677–681. Zbl 1081.46017, MR 2153091, 10.1007/s10587-005-0054-5
Reference: [7] W. B.  Johnson, H. P.  Rosenthal: On w$^*$  basic sequences and their applications to the study of Banach spaces.Studia Math. 43 (1972), 77–92. MR 0310598, 10.4064/sm-43-1-77-92
Reference: [8] G.  Köthe: Topological Vector Spaces  II.Springer-Verlag, Berlin-Heidelberg-New York, 1984. MR 0551623
Reference: [9] A. Pełczyński: A note on the paper of I.  Singer “Basic sequences and reflexivity of Banach spaces”.Studia Math. 21 (1962), 371–374. MR 0146636, 10.4064/sm-21-3-370-374
Reference: [10] V.  Pták: Biorthogonal systems and reflexivity of Banach spaces.Czechoslovak Math.  J. 9 (1959), 319–325. MR 0110008
Reference: [11] W.  Ruckle: Reflexivity of  $L(E,F)$.Proc. Amer. Math. Soc. 34 (1972), 171–174. Zbl 0242.46018, MR 0291777
Reference: [12] W. Ruess: Duality and geometry of spaces of compact operators.In: Functional Analysis: Surveys and Recent Results  III. Math. Studies  90, North Holland, , 1984. Zbl 0573.46007, MR 0761373
Reference: [13] I.  Singer: Basic sequences and reflexivity of Banach spaces.Studia Math. 21 (1962), 351–369. Zbl 0114.30903, MR 0146635, 10.4064/sm-21-3-351-369
Reference: [14] I.  Singer: Bases in Banach Spaces, Vol.  I.Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0298399
.

Files

Files Size Format View
CzechMathJ_56-2006-3_11.pdf 327.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo