Previous |  Up |  Next

Article

Title: Ideal extensions of graph algebras (English)
Author: Čipková, Karla
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 933-947
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal A$ and $\mathcal B$ be graph algebras. In this paper we present the notion of an ideal in a graph algebra and prove that an ideal extension of $\mathcal A$ by $\mathcal B$ always exists. We describe (up to isomorphism) all such extensions. (English)
Keyword: oriented graph
Keyword: graph (Shallon) algebra
Keyword: congruence relation
Keyword: ideal
Keyword: quotient graph algebra
Keyword: ideal extension
MSC: 08A30
idZBL: Zbl 1164.08300
idMR: MR2261665
.
Date available: 2009-09-24T11:39:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128118
.
Reference: [1] A. H. Clifford: Extension of semigroup.Trans. Amer. Math. Soc. 68 (1950), 165–173. MR 0033836, 10.1090/S0002-9947-1950-0033836-2
Reference: [2] A. J. Hullin: Extension of ordered semigroup.Czechoslovak Math. J. 26(101) (1976), 1–12.
Reference: [3] D. Jakubíková-Studenovská: Subalgebra extensions of partial monounary algebras.Czechoslovak Math. J, Submitted. MR 2261657
Reference: [4] N. Kehaypulu, P. Kiriakuli: The ideal extension of lattices.Simon Stevin 64, 51–56. MR 1072483
Reference: [5] N. Kehaypulu, M. Tsingelis: The ideal extension of ordered semigroups.Commun. Algebra 31 (2003), 4939–4969. MR 1998037, 10.1081/AGB-120023141
Reference: [6] E. W. Kiss, R. Pöschel, P. Pröhle: Subvarieties of varieties generated by graph algebras.Acta Sci. Math. 54 (1990), 57–75. MR 1073419
Reference: [7] J. Martinez: Torsion theory of lattice ordered groups.Czechoslovak Math. J. 25(100) (1975), 284–299. MR 0389705
Reference: [8] S. Oates-Macdonald, M. Vaughan-Lee: Varieties that make one cross.J. Austral. Math. Soc. (Ser. A) 26 (1978), 368–382. MR 0515754, 10.1017/S1446788700011897
Reference: [9] S. Oates-Williams: On the variety generated by Murskii’s algebra.Algebra Universalis 18 (1984), 175–177. Zbl 0542.08004, MR 0743465, 10.1007/BF01198526
Reference: [10] R. Pöschel: Graph algebras and graph varieties.Algebra Universalis 27 (1990), 559–577. MR 1387902, 10.1007/BF01189000
Reference: [11] R. Pöschel: Shallon algebras and varieties for graphs and relational systems.Algebra und Graphentheorie (Jahrestagung Algebra und Grenzgebiete), Bergakademie Freiberg, Section Math., Siebenlehn, 1986, pp. 53–56.
Reference: [12] C. R. Shallon: Nonfinitely based finite algebras derived from lattices.PhD.  Dissertation, U.C.L.A, 1979.
.

Files

Files Size Format View
CzechMathJ_56-2006-3_12.pdf 334.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo