Title:
|
Ideal extensions of graph algebras (English) |
Author:
|
Čipková, Karla |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
933-947 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathcal A$ and $\mathcal B$ be graph algebras. In this paper we present the notion of an ideal in a graph algebra and prove that an ideal extension of $\mathcal A$ by $\mathcal B$ always exists. We describe (up to isomorphism) all such extensions. (English) |
Keyword:
|
oriented graph |
Keyword:
|
graph (Shallon) algebra |
Keyword:
|
congruence relation |
Keyword:
|
ideal |
Keyword:
|
quotient graph algebra |
Keyword:
|
ideal extension |
MSC:
|
08A30 |
idZBL:
|
Zbl 1164.08300 |
idMR:
|
MR2261665 |
. |
Date available:
|
2009-09-24T11:39:49Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128118 |
. |
Reference:
|
[1] A. H. Clifford: Extension of semigroup.Trans. Amer. Math. Soc. 68 (1950), 165–173. MR 0033836, 10.1090/S0002-9947-1950-0033836-2 |
Reference:
|
[2] A. J. Hullin: Extension of ordered semigroup.Czechoslovak Math. J. 26(101) (1976), 1–12. |
Reference:
|
[3] D. Jakubíková-Studenovská: Subalgebra extensions of partial monounary algebras.Czechoslovak Math. J, Submitted. MR 2261657 |
Reference:
|
[4] N. Kehaypulu, P. Kiriakuli: The ideal extension of lattices.Simon Stevin 64, 51–56. MR 1072483 |
Reference:
|
[5] N. Kehaypulu, M. Tsingelis: The ideal extension of ordered semigroups.Commun. Algebra 31 (2003), 4939–4969. MR 1998037, 10.1081/AGB-120023141 |
Reference:
|
[6] E. W. Kiss, R. Pöschel, P. Pröhle: Subvarieties of varieties generated by graph algebras.Acta Sci. Math. 54 (1990), 57–75. MR 1073419 |
Reference:
|
[7] J. Martinez: Torsion theory of lattice ordered groups.Czechoslovak Math. J. 25(100) (1975), 284–299. MR 0389705 |
Reference:
|
[8] S. Oates-Macdonald, M. Vaughan-Lee: Varieties that make one cross.J. Austral. Math. Soc. (Ser. A) 26 (1978), 368–382. MR 0515754, 10.1017/S1446788700011897 |
Reference:
|
[9] S. Oates-Williams: On the variety generated by Murskii’s algebra.Algebra Universalis 18 (1984), 175–177. Zbl 0542.08004, MR 0743465, 10.1007/BF01198526 |
Reference:
|
[10] R. Pöschel: Graph algebras and graph varieties.Algebra Universalis 27 (1990), 559–577. MR 1387902, 10.1007/BF01189000 |
Reference:
|
[11] R. Pöschel: Shallon algebras and varieties for graphs and relational systems.Algebra und Graphentheorie (Jahrestagung Algebra und Grenzgebiete), Bergakademie Freiberg, Section Math., Siebenlehn, 1986, pp. 53–56. |
Reference:
|
[12] C. R. Shallon: Nonfinitely based finite algebras derived from lattices.PhD. Dissertation, U.C.L.A, 1979. |
. |