Previous |  Up |  Next

Article

Title: On left $C$-$\scr U$-liberal semigroups (English)
Author: He, Yong
Author: Shao, Fang
Author: Li, Shi-qun
Author: Gao, Wei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 4
Year: 2006
Pages: 1085-1108
Summary lang: English
.
Category: math
.
Summary: In this paper the equivalence $\tilde{\mathcal Q}^U$ on a semigroup $S$ in terms of a set $U$ of idempotents in $S$ is defined. A semigroup $S$ is called a $\mathcal U$-liberal semigroup with $U$ as the set of projections and denoted by $S(U)$ if every $\tilde{\mathcal Q}^U$-class in it contains an element in $U$. A class of $\mathcal U$-liberal semigroups is characterized and some special cases are considered. (English)
Keyword: equivalence $\tilde{\mathcal Q}^U$
Keyword: left $C$-$\mathcal U$-liberal semigroup
Keyword: left semi-spined product
Keyword: band-formal construction
Keyword: left $C$-liberal semigroup
MSC: 20M10
idZBL: Zbl 1157.20334
idMR: MR2280796
.
Date available: 2009-09-24T11:41:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128132
.
Reference: [1] L.  Du, Y.  He: On the **-Green’s relations of semigroups and $C$-broad semigroups.J.  Northwest Univ. (Natural Sci. Edt.) 29 (1999), 9–12.
Reference: [2] A.  El-Qallali: Structure theory for abundant and related semigroups.PhD. Thesis, , York, 1980.
Reference: [3] J. B.  Fountain: Rpp monoids with central idempotents.Semigroup Forum 13 (1977), 229–237. 10.1007/BF02194941
Reference: [4] J. B.  Fountain: Adequate semigroups.Proc. Edinburgh Math. Soc. 44 (1979), 113–125. Zbl 0414.20048, MR 0549457
Reference: [5] J. B.  Fountain: Abundant semigroups.Proc. London Math. Soc. 44 (1982), 103–129. Zbl 0481.20036, MR 0642795
Reference: [6] J. B.  Fountain, G. M. S.  Gomes, and V. Gould: A Munn type representation for a class of $E$-semiadequate semigroups.J.  Algebra 218 (1999), 693–714. MR 1705754, 10.1006/jabr.1999.7871
Reference: [7] G. M. S.  Gomes, V.  Gould: Fundamental Ehresmann semigroups.Semigroup Forum 63 (2001), 11–33. MR 1830041, 10.1007/s002330010054
Reference: [8] Y. Q.  Guo, X. M.  Ren, and K. P.  Shum: Another structure of left $C$-semigroups.Adv. Math. 24 (1995), 39–43. MR 1334601
Reference: [9] Y. Q.  Guo, K. P.  Shum, P. Y.  Zhu: The structure of left $C$-rpp semigroups.Semigroup Forum 50 (1995), 9–23. MR 1301549, 10.1007/BF02573502
Reference: [10] Y. He: A construction for $\mathcal P$-regular semigroups (announcement).Adv. Math. 29 (2000), 566–568.
Reference: [11] Y.  He: Partial kernel normal systems in regular semigroups.Semigroup Forum 64 (2002), 325–328. Zbl 1002.20037, MR 1876862, 10.1007/s002330010059
Reference: [12] Y.  He: Some studies on regular and generalized regular semigroups.PhD. Thesis, Zhongshan Univ., Guangzhou, 2002. MR 2021655
Reference: [13] Y.  He: A construction for $\mathcal P$-regular semigroups.Commun. Algebra 31 (2003), 1–27. MR 1969210, 10.1081/AGB-120016747
Reference: [14] Y.  He, Y. Q. Guo, and K. P.  Shum: The construction of orthodox supper rpp semigroups.Sci. China 47 (2004), 552–565. MR 2128582, 10.1360/02ys0365
Reference: [15] J. M.  Howie: Fundamentals of Semigroup Theory.Oxford University Press Inc., New York, 1995. Zbl 0835.20077, MR 1455373
Reference: [16] M. Kil’p: On monoids over which all strongly flat cyclic right acts are projective.Semigroup Forum 52 (1996), 241–245. Zbl 0844.20051, MR 1371806, 10.1007/BF02574099
Reference: [17] M. V.  Lawson: Rees matrix semigroups.Proc. Edinburgh Math. Soc. 33 (1990), 23–37. Zbl 0668.20049, MR 1038762
Reference: [18] M. V. Lawson: Semigroups and ordered categories. I.  The reduced case.J.  Algebra 141 (1991), 422–462. Zbl 0747.18007, MR 1125706, 10.1016/0021-8693(91)90242-Z
Reference: [19] D. B. McAlister: One-to one partial right translations of a right cancellative semigroup.J.  Algebra 43 (1976), 231–251. Zbl 0349.20025, MR 0424980, 10.1016/0021-8693(76)90158-7
Reference: [20] M.  Petrich: Inverse Semigroups.John Wiley & Sons, New York, 1984. Zbl 0546.20053, MR 0752899
Reference: [21] M. Petrich, N.  Reilly: Completely Regular Semigroups.John Wiley & Sons, New York, 1999. MR 1684919
Reference: [22] F.  Shao, Y.  He: Partial kernel normal systems for eventually regular semigroups.Semigroup Forum 71 (2005), 401–410. Zbl 1098.20046, MR 2204759, 10.1007/s00233-005-0528-7
Reference: [23] X. D.  Tang: On a theorem of $C$-wrpp semigroups.Comm. Algebra 25 (1997), 1499–1504. Zbl 0879.20030, MR 1444014, 10.1080/00927879708825931
Reference: [24] M.  Yamada: P-systems in regular semigroups.Semigroup Forum 24 (1982), 173–187. Zbl 0479.20030, MR 0650569, 10.1007/BF02572766
Reference: [25] M.  Yamada,M. K.  Sen: $\mathcal P$-regular semigroups.Semigroup Forum 39 (1989), 157–178. MR 0995827, 10.1007/BF02573295
Reference: [26] M. C.  Zhang, Y.  He: The structure of $\mathcal P$-regular semigroups.Semigroup Forum 54 (1997), 278–291. MR 1436847, 10.1007/BF02676611
Reference: [27] P. Y.  Zhu, Y. Q.  Guo, K. P.  Shum: Structure and characterizations of left Clifford semigroups.Science in China, Series  A 35 (1992), 791–805. MR 1196631
.

Files

Files Size Format View
CzechMathJ_56-2006-4_2.pdf 413.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo