Title:
|
On the divisibility of power LCM matrices by power GCD matrices (English) |
Author:
|
Zhao, Jianrong |
Author:
|
Hong, Shaofang |
Author:
|
Liao, Qunying |
Author:
|
Shum, K. P. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
115-125 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $S=\lbrace x_1,\dots ,x_n\rbrace $ be a set of $n$ distinct positive integers and $e\ge 1$ an integer. Denote the $n\times n$ power GCD (resp. power LCM) matrix on $S$ having the $e$-th power of the greatest common divisor $(x_i,x_j)$ (resp. the $e$-th power of the least common multiple $[x_i,x_j]$) as the $(i,j)$-entry of the matrix by $((x_i, x_j)^e)$ (resp. $([x_i, x_j]^e))$. We call the set $S$ an odd gcd closed (resp. odd lcm closed) set if every element in $S$ is an odd number and $(x_i,x_j)\in S$ (resp. $[x_i, x_j]\in S$) for all $1\le i,j \le n$. In studying the divisibility of the power LCM and power GCD matrices, Hong conjectured in 2004 that for any integer $e\ge 1$, the $n\times n$ power GCD matrix $((x_i, x_j)^e)$ defined on an odd-gcd-closed (resp. odd-lcm-closed) set $S$ divides the $n\times n$ power LCM matrix $([x_i, x_j]^e)$ defined on $S$ in the ring $M_n({\mathbb Z})$ of $n\times n$ matrices over integers. In this paper, we use Hong’s method developed in his previous papers [J. Algebra 218 (1999) 216–228; 281 (2004) 1–14, Acta Arith. 111 (2004), 165–177 and J. Number Theory 113 (2005), 1–9] to investigate Hong’s conjectures. We show that the conjectures of Hong are true for $n\le 3$ but they are both not true for $n\ge 4$. (English) |
Keyword:
|
GCD-closed set |
Keyword:
|
LCM-closed set |
Keyword:
|
greatest-type divisor |
Keyword:
|
divisibility |
MSC:
|
11A25 |
MSC:
|
11C20 |
MSC:
|
15A36 |
idZBL:
|
Zbl 1174.11031 |
idMR:
|
MR2309953 |
. |
Date available:
|
2009-09-24T11:44:21Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128159 |
. |
Reference:
|
[1] T. M. Apostol: Arithmetical properties of generalized Ramanujan sums.Pacific J. Math. 41 (1972), 281–293. Zbl 0226.10045, MR 0311597, 10.2140/pjm.1972.41.281 |
Reference:
|
[2] S. Beslin and S. Ligh: Another generalization of Smith’s determinant.Bull. Austral. Math. Soc. 40 (1989), 413–415. MR 1037636, 10.1017/S0004972700017457 |
Reference:
|
[3] K. Bourque and S. Ligh: On GCD and LCM matrices.Linear Algebra Appl. 174 (1992), 65–74. MR 1176451, 10.1016/0024-3795(92)90042-9 |
Reference:
|
[4] K. Bourque and S. Ligh: Matrices associated with arithmetical functions.Linear and Multilinear Algebra 34 (1993), 261–267. MR 1304611, 10.1080/03081089308818225 |
Reference:
|
[5] K. Bourque and S. Ligh: Matrices associated with classes of arithmetical functions.J. Number Theory 45 (1993), 367–376. MR 1247390, 10.1006/jnth.1993.1083 |
Reference:
|
[6] K. Bourque and S. Ligh: Matrices associated with classes of multiplicative functions.Linear Algebra Appl. 216 (1995), 267–275. MR 1319990 |
Reference:
|
[7] C. He and J. Zhao: More on divisibility of determinants of LCM Matrices on GCD-closed sets.Southeast Asian Bull. Math. 29 (2005), 887–893. MR 2188728 |
Reference:
|
[8] S. Hong: On the Bourque-Ligh conjecture of least common multiple matrices.J. Algebra 218 (1999), 216–228. Zbl 1015.11007, MR 1704684, 10.1006/jabr.1998.7844 |
Reference:
|
[9] S. Hong: On the factorization of LCM matrices on gcd-closed sets.Linear Algebra Appl. 345 (2002), 225–233. Zbl 0995.15006, MR 1883274 |
Reference:
|
[10] S. Hong: Gcd-closed sets and determinants of matrices associated with arithmetical functions.Acta Arith. 101 (2002), 321–332. Zbl 0987.11014, MR 1880046, 10.4064/aa101-4-2 |
Reference:
|
[11] S. Hong: Factorization of matrices associated with classes of arithmetical functions.Colloq. Math. 98 (2003), 113–123. Zbl 1047.11023, MR 2032075, 10.4064/cm98-1-9 |
Reference:
|
[12] S. Hong: Notes on power LCM matrices.Acta Arith. 111 (2004), 165–177. Zbl 1047.11022, MR 2039420, 10.4064/aa111-2-5 |
Reference:
|
[13] S. Hong: Nonsingularity of matrices associated with classes of arithmetical functions.J. Algebra 281 (2004), 1–14. Zbl 1064.11024, MR 2091959, 10.1016/j.jalgebra.2004.07.026 |
Reference:
|
[14] S. Hong: Nonsingularity of least common multiple matrices on gcd-closed sets.J. Number Theory 113 (2005), 1–9. Zbl 1080.11022, MR 2141756, 10.1016/j.jnt.2005.03.004 |
Reference:
|
[15] S. Hong and R. Loewy: Asymptotic behavior of eigenvalues of greatest common divisor matrices.Glasgow Math. J. 46 (2004), 551–569. MR 2094810, 10.1017/S0017089504001995 |
Reference:
|
[16] S. Hong and Q. Sun: Determinants of matrices associated with incidence functions on posets.Czechoslovak Math. J. 54 (2004), 431–443. MR 2059264, 10.1023/B:CMAJ.0000042382.61841.0c |
Reference:
|
[17] P. Lindqvist and K. Seip: Note on some greatest common divisor matrices.Acta Arith. 84 (1998), 149–154. MR 1614259, 10.4064/aa-84-2-149-154 |
Reference:
|
[18] P. J. McCarthy: A generalization of Smith’s determinant.Canad. Math. Bull. 29 (1986), 109–113. Zbl 0588.10005, MR 0824893, 10.4153/CMB-1986-020-1 |
Reference:
|
[19] H. J. S. Smith: On the value of a certain arithmetical determinant.Proc. London Math. Soc. 7 (1875–1876), 208–212. |
Reference:
|
[20] A. Wintner: Diophantine approximations and Hilbert’s space.Amer. J. Math. 66 (1944), 564–578. Zbl 0061.24902, MR 0011497, 10.2307/2371766 |
. |