Previous |  Up |  Next

Article

Title: Descriptive properties of mappings between nonseparable Luzin spaces (English)
Author: Holický, Petr
Author: Komínek, Václav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 201-224
Summary lang: English
.
Category: math
.
Summary: We relate some subsets $G$ of the product $X\times Y$ of nonseparable Luzin (e.g., completely metrizable) spaces to subsets $H$ of $\mathbb{N}^{\mathbb{N}}\times Y$ in a way which allows to deduce descriptive properties of $G$ from corresponding theorems on $H$. As consequences we prove a nonseparable version of Kondô’s uniformization theorem and results on sets of points $y$ in $Y$ with particular properties of fibres $f^{-1}(y)$ of a mapping $f\: X\rightarrow Y$. Using these, we get descriptions of bimeasurable mappings between nonseparable Luzin spaces in terms of fibres. (English)
Keyword: nonseparable metric spaces
Keyword: Luzin spaces
Keyword: $\sigma $-discrete network
Keyword: uniformization
Keyword: bimeasurable maps
MSC: 28A05
MSC: 54E40
MSC: 54H05
idZBL: Zbl 1174.54024
idMR: MR2309961
.
Date available: 2009-09-24T11:45:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128167
.
Reference: [1] Z. Frolík: A measurable map with analytic domain and metrizable range is quotient.Bull. Amer. Math. Soc. 76 (1970), 1112–1117. MR 0265539, 10.1090/S0002-9904-1970-12584-8
Reference: [2] Z. Frolík and P. Holický: Applications of Luzinian separation principles (non-separable case).Fund. Math. 117 (1983), 165–185. MR 0719837, 10.4064/fm-117-3-165-185
Reference: [3] R. W. Hansell: On characterizing non-separable analytic and extended Borel sets as types of continuous images.Proc. London Math. Soc. 28 (1974), 683–699. Zbl 0313.54044, MR 0362269
Reference: [4] R. W. Hansell: Descriptive sets and the topology of nonseparable Banach spaces.Serdica Math. J. 27 (2001), 1–66. Zbl 0982.46012, MR 1828793
Reference: [5] R. W. Hansell: Descriptive topology.Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), North-Holland, Amsterdam, London, New York, Tokyo, 1992, pp. 275–315. Zbl 0805.54036, MR 1229129
Reference: [6] P. Holický: Čech analytic and almost $K$-descriptive spaces.Czech. Math. J. 43 (1993), 451–466. MR 1249614
Reference: [7] P. Holický: Luzin theorems for scattered-$K$-analytic spaces and Borel measures on them.Atti Sem. Mat. Fis. Univ. Modena XLIV (1996), 395–413. MR 1428772
Reference: [8] P. Holický: Generalized analytic spaces, completeness and fragmentability.Czech. Math. J. 51 (2001), 791–818. MR 1864043, 10.1023/A:1013769030260
Reference: [9] P. Holický and V. Komínek: On projections of nonseparable Souslin and Borel sets along separable spaces.Acta Univ. Carolin. Math. Phys. 42 (2001), 33–41. MR 1900390
Reference: [10] P. Holický and J. Pelant: Internal descriptions of absolute Borel classes.Topology Appl. 141 (2004), 87–104. MR 2058682
Reference: [11] P. Holický and M. Zelený: A converse of the Arsenin-Kunugui theorem on Borel sets with $\sigma $-compact sections.Fund. Math. 165 (2000), 191–202. MR 1805424
Reference: [12] J. E. Jayne and C. A. Rogers: Upper semicontinuous set-valued functions.Acta Math. 149 (1982), 87–125. MR 0674168, 10.1007/BF02392351
Reference: [13] J. Kaniewski and R. Pol: Borel-measurable selectors for compact-valued mappings in the non-separable case.Bull. Pol. Acad. Sci. Math. 23 (1975), 1043–1050. MR 0410657
Reference: [14] A. S. Kechris: Classical Descriptive Set Theory.Springer, New York etc., 1995. Zbl 0819.04002, MR 1321597
Reference: [15] V. Komínek: A remark on the uniformization in metric spaces.Acta Univ. Carolin. Math. Phys. 40 (1999), 65–74. MR 1751542
Reference: [16] R. Purves: Bimeasurable functions.Fund. Math. 58 (1966), 149–157. Zbl 0143.07101, MR 0199339, 10.4064/fm-58-2-149-157
Reference: [17] C. A. Rogers and R. C. Willmott: On the uniformization of sets in topological spaces.Acta Math. 120 (1968), 1–52. MR 0237733, 10.1007/BF02394605
.

Files

Files Size Format View
CzechMathJ_57-2007-1_18.pdf 462.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo