Title:
|
Descriptive properties of mappings between nonseparable Luzin spaces (English) |
Author:
|
Holický, Petr |
Author:
|
Komínek, Václav |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
201-224 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We relate some subsets $G$ of the product $X\times Y$ of nonseparable Luzin (e.g., completely metrizable) spaces to subsets $H$ of $\mathbb{N}^{\mathbb{N}}\times Y$ in a way which allows to deduce descriptive properties of $G$ from corresponding theorems on $H$. As consequences we prove a nonseparable version of Kondô’s uniformization theorem and results on sets of points $y$ in $Y$ with particular properties of fibres $f^{-1}(y)$ of a mapping $f\: X\rightarrow Y$. Using these, we get descriptions of bimeasurable mappings between nonseparable Luzin spaces in terms of fibres. (English) |
Keyword:
|
nonseparable metric spaces |
Keyword:
|
Luzin spaces |
Keyword:
|
$\sigma $-discrete network |
Keyword:
|
uniformization |
Keyword:
|
bimeasurable maps |
MSC:
|
28A05 |
MSC:
|
54E40 |
MSC:
|
54H05 |
idZBL:
|
Zbl 1174.54024 |
idMR:
|
MR2309961 |
. |
Date available:
|
2009-09-24T11:45:13Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128167 |
. |
Reference:
|
[1] Z. Frolík: A measurable map with analytic domain and metrizable range is quotient.Bull. Amer. Math. Soc. 76 (1970), 1112–1117. MR 0265539, 10.1090/S0002-9904-1970-12584-8 |
Reference:
|
[2] Z. Frolík and P. Holický: Applications of Luzinian separation principles (non-separable case).Fund. Math. 117 (1983), 165–185. MR 0719837, 10.4064/fm-117-3-165-185 |
Reference:
|
[3] R. W. Hansell: On characterizing non-separable analytic and extended Borel sets as types of continuous images.Proc. London Math. Soc. 28 (1974), 683–699. Zbl 0313.54044, MR 0362269 |
Reference:
|
[4] R. W. Hansell: Descriptive sets and the topology of nonseparable Banach spaces.Serdica Math. J. 27 (2001), 1–66. Zbl 0982.46012, MR 1828793 |
Reference:
|
[5] R. W. Hansell: Descriptive topology.Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), North-Holland, Amsterdam, London, New York, Tokyo, 1992, pp. 275–315. Zbl 0805.54036, MR 1229129 |
Reference:
|
[6] P. Holický: Čech analytic and almost $K$-descriptive spaces.Czech. Math. J. 43 (1993), 451–466. MR 1249614 |
Reference:
|
[7] P. Holický: Luzin theorems for scattered-$K$-analytic spaces and Borel measures on them.Atti Sem. Mat. Fis. Univ. Modena XLIV (1996), 395–413. MR 1428772 |
Reference:
|
[8] P. Holický: Generalized analytic spaces, completeness and fragmentability.Czech. Math. J. 51 (2001), 791–818. MR 1864043, 10.1023/A:1013769030260 |
Reference:
|
[9] P. Holický and V. Komínek: On projections of nonseparable Souslin and Borel sets along separable spaces.Acta Univ. Carolin. Math. Phys. 42 (2001), 33–41. MR 1900390 |
Reference:
|
[10] P. Holický and J. Pelant: Internal descriptions of absolute Borel classes.Topology Appl. 141 (2004), 87–104. MR 2058682 |
Reference:
|
[11] P. Holický and M. Zelený: A converse of the Arsenin-Kunugui theorem on Borel sets with $\sigma $-compact sections.Fund. Math. 165 (2000), 191–202. MR 1805424 |
Reference:
|
[12] J. E. Jayne and C. A. Rogers: Upper semicontinuous set-valued functions.Acta Math. 149 (1982), 87–125. MR 0674168, 10.1007/BF02392351 |
Reference:
|
[13] J. Kaniewski and R. Pol: Borel-measurable selectors for compact-valued mappings in the non-separable case.Bull. Pol. Acad. Sci. Math. 23 (1975), 1043–1050. MR 0410657 |
Reference:
|
[14] A. S. Kechris: Classical Descriptive Set Theory.Springer, New York etc., 1995. Zbl 0819.04002, MR 1321597 |
Reference:
|
[15] V. Komínek: A remark on the uniformization in metric spaces.Acta Univ. Carolin. Math. Phys. 40 (1999), 65–74. MR 1751542 |
Reference:
|
[16] R. Purves: Bimeasurable functions.Fund. Math. 58 (1966), 149–157. Zbl 0143.07101, MR 0199339, 10.4064/fm-58-2-149-157 |
Reference:
|
[17] C. A. Rogers and R. C. Willmott: On the uniformization of sets in topological spaces.Acta Math. 120 (1968), 1–52. MR 0237733, 10.1007/BF02394605 |
. |