Previous |  Up |  Next

Article

Title: On Hong’s conjecture for power LCM matrices (English)
Author: Cao, Wei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 253-268
Summary lang: English
.
Category: math
.
Summary: A set $\mathcal{S}=\lbrace x_1,\ldots ,x_n\rbrace $ of $n$ distinct positive integers is said to be gcd-closed if $(x_{i},x_{j})\in \mathcal{S}$ for all $1\le i,j\le n $. Shaofang Hong conjectured in 2002 that for a given positive integer $t$ there is a positive integer $k(t)$ depending only on $t$, such that if $n\le k(t)$, then the power LCM matrix $([x_i,x_j]^t)$ defined on any gcd-closed set $\mathcal{S}=\lbrace x_1,\ldots ,x_n\rbrace $ is nonsingular, but for $n\ge k(t)+1$, there exists a gcd-closed set $\mathcal{S}=\lbrace x_1,\ldots ,x_n\rbrace $ such that the power LCM matrix $([x_i,x_j]^t)$ on $\mathcal{S}$ is singular. In 1996, Hong proved $k(1)=7$ and noted $k(t)\ge 7$ for all $t\ge 2$. This paper develops Hong’s method and provides a new idea to calculate the determinant of the LCM matrix on a gcd-closed set and proves that $k(t)\ge 8$ for all $t\ge 2$. We further prove that $k(t)\ge 9$ iff a special Diophantine equation, which we call the LCM equation, has no $t$-th power solution and conjecture that $k(t)=8$ for all $t\ge 2$, namely, the LCM equation has $t$-th power solution for all $t\ge 2$. (English)
Keyword: gcd-closed set
Keyword: greatest-type divisor(GTD)
Keyword: maximal gcd-fixed set(MGFS)
Keyword: least common multiple matrix
Keyword: power LCM matrix
Keyword: nonsingularity
MSC: 11A25
MSC: 11C20
idZBL: Zbl 1174.11030
idMR: MR2309964
.
Date available: 2009-09-24T11:45:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128170
.
Reference: [1] S. Beslin: Reciprocal GCD matrices and LCM matrices.Fibonacci Quart. 29 (1991), 271–274. Zbl 0738.11026, MR 1114893
Reference: [2] S. Beslin and S. Ligh: Greatest common divisor matrices.Linear Algebra Appl. 118 (1989), 69–76. MR 0995366, 10.1016/0024-3795(89)90572-7
Reference: [3] K. Bourque and S. Ligh: Matrices associated with classes of arithmetical functions.J. Number Theory 45 (1993), 367–376. MR 1247390, 10.1006/jnth.1993.1083
Reference: [4] K. Bourque and S. Ligh: On GCD and LCM matrices.Linear Algebra Appl. 174 (1992), 65–74. MR 1176451, 10.1016/0024-3795(92)90042-9
Reference: [5] K. Bourque and S. Ligh: Matrices associated with classes of multiplicative functions.Linear Algebra Appl. 216 (1995), 267–275. MR 1319990
Reference: [6] S. Z. Chun: GCD and LCM power matrices.Fibonacci Quart. 34 (1996), 290–297. MR 1394756
Reference: [7] P. Haukkanen, J. Wang and J. Sillanpää: On Smith’s determinant.Linear Algebra Appl. 258 (1997), 251–269. MR 1444107
Reference: [8] S. Hong: LCM matrix on an r-fold gcd-closed set.J. Sichuan Univ. Nat. Sci. Ed. 33 (1996), 650–657. Zbl 0869.11021, MR 1440627
Reference: [9] S. Hong: On Bourque-Ligh conjecture of LCM matrices.Adv. in Math. (China) 25 (1996), 566–568. Zbl 0869.11022, MR 1453166
Reference: [10] S. Hong: On LCM matrices on GCD-closed sets.Southeast Asian Bull. Math. 22 (1998), 381–384. Zbl 0936.15011, MR 1811182
Reference: [11] S. Hong: On the Bourque-Ligh conjecture of least common multiple matrices.J. Algebra 218 (1999), 216–228. Zbl 1015.11007, MR 1704684, 10.1006/jabr.1998.7844
Reference: [12] S. Hong: Gcd-closed sets and determinants of matrices associated with arithmetical functions.Acta Arith. 101 (2002), 321–332. Zbl 0987.11014, MR 1880046, 10.4064/aa101-4-2
Reference: [13] S. Hong: On the factorization of LCM matrices on gcd-closed sets.Linear Algebra Appl. 345 (2002), 225–233. Zbl 0995.15006, MR 1883274
Reference: [14] S. Hong: Notes on power LCM matrices.Acta Arith. 111 (2004), 165–177. Zbl 1047.11022, MR 2039420, 10.4064/aa111-2-5
Reference: [15] S. Hong: Nonsingularity of matrices associated with classes of arithmetical functions.J.  Algebra 281 (2004), 1–14. Zbl 1064.11024, MR 2091959, 10.1016/j.jalgebra.2004.07.026
Reference: [16] S. Hong: Nonsingularity of least common multiple matrices on gcd-closed sets.J. Number Theory 113 (2005), 1–9. Zbl 1080.11022, MR 2141756, 10.1016/j.jnt.2005.03.004
Reference: [17] H. J. S. Smith: On the value of a certain arithmetical determinant.Proc. London Math. Soc. 7 (1875–1876), 2080–212.
.

Files

Files Size Format View
CzechMathJ_57-2007-1_21.pdf 396.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo