Previous |  Up |  Next

Article

Title: Some Kurzweil-Henstock-type integrals and the wide Denjoy integral (English)
Author: Sworowski, Piotr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 419-434
Summary lang: English
.
Category: math
.
Summary: Kurzweil-Henstock integrals related to local systems and the wide Denjoy integral are discussed in the frame of their comparability and compatibility. (English)
Keyword: wide Denjoy integral
Keyword: Kurzweil-Henstock integral
Keyword: Kubota integral
Keyword: local system
Keyword: porosity
Keyword: intersection conditions
MSC: 26A39
MSC: 26A42
idZBL: Zbl 1174.26309
idMR: MR2309975
.
Date available: 2009-09-24T11:46:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128181
.
Reference: [1] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: On dyadic integrals and some other integrals associated with local systems.Journal of Mathematical Analysis and Applications 271 (2002), 506–524. MR 1923649, 10.1016/S0022-247X(02)00146-4
Reference: [2] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: The Ward property for a $\mathcal{P}$-adic basis and the $\mathcal{P}$-adic integral.Journal of Mathematical Analysis and Applications 285 (2003), 578–592. MR 2005142, 10.1016/S0022-247X(03)00426-8
Reference: [3] D. Bongiorno, L. Di Piazza and V. A. Skvortsov: Variational measures related to local systems and the Ward property of $\mathcal{P}$-adic path bases.Czech. Math. J. 56 (2006), 559–578. MR 2291756, 10.1007/s10587-006-0037-1
Reference: [4] A. M. Bruckner: Differentiation of Real Functions.Lecture Notes in Mathematics 659, Springer-Verlag, 1978. Zbl 0382.26002, MR 0507448
Reference: [5] V. Ene: On Borel measurable functions that are $\text{VBG}$ and ${\mathcal{N}}$.Real Anal. Exch. 22 (1996/97), 688–695. MR 1460981
Reference: [6] V. Ene: Hake-Alexandroff-Looman type theorems.Real Anal. Exch. 23 (1997/98), 491–524. MR 1639960
Reference: [7] V. Ene: A study of some general integrals that contains the wide Denjoy integral.Real Anal. Exch. 26 (2000/01), 51–100. MR 1825497
Reference: [8] T. Filipczak: Intersection conditions for some density and ${\mathcal{I}}$-density local systems.Real Anal. Exch. 15 (1989/90), 170–192. MR 1042535
Reference: [9] R. A. Gordon: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral.Real Anal. Exch. 16 (1990/91), 154–168. MR 1087481
Reference: [10] R. A. Gordon: Some comments on an approximately continuous Khintchine integral.Real Anal. Exch. 20 (1994/95), 831–841. MR 1348106, 10.2307/44152566
Reference: [11] Y. Kubota: On the approximately continuous Denjoy integral.Tôhoku Mathematical Journal 15 (1963), 253–264. Zbl 0129.27003, MR 0153811, 10.2748/tmj/1178243808
Reference: [12] Y. Kubota: An integral of the Denjoy type.Proceedings of the Japan Academy 40 (1964), 713–717. Zbl 0141.24601, MR 0178113, 10.3792/pja/1195522601
Reference: [13] C. M. Lee: An analogue of the theorem of Hake-Alexandroff-Looman.Fundamenta Mathematicae 100 (1978), 69–74. Zbl 0384.26004, MR 0486362, 10.4064/fm-100-1-69-74
Reference: [14] C. M. Lee: On Baire one Darboux functions with Lusin’s condition ${\mathcal{N}}$.Real Anal. Exch. 7 (1981/82), 61–64. MR 0646637, 10.2307/44153390
Reference: [15] S. P. Lu: Notes on the approximately continuous Henstock integral.Real Anal. Exch. 22 (1996/97), 377–381. MR 1433622
Reference: [16] W. Poreda, E. Wagner-Bojakowska and W. Wilczyński: A category analogue of the density topology.Fundamenta Mathematicae 125 (1985), 167–173. MR 0813753, 10.4064/fm-125-2-167-173
Reference: [17] J. Ridder: Über approximativ stetige Denjoy-Integrale.Fundamenta Mathematicae 21 (1933), 136–162. Zbl 0008.10901
Reference: [18] S. Saks: Theory of Integral.New York, 1937.
Reference: [19] D. N. Sarkhel: A wide constructive integral.Mathematica Japonica 32 (1987), 295–309. Zbl 0623.26007, MR 0895552
Reference: [20] D. N. Sarkhel and A. K. De: The proximally continuous integrals.Journal of the Australian Mathematical Society (Series A) 31 (1981), 26–45. MR 0622811, 10.1017/S1446788700018462
Reference: [21] D. N. Sarkhel and A. B. Kar: $[\text{PVB}]$ functions and integration.Journal of the Australian Mathematical Society (Series A) 36 (1984), 335–353. MR 0733906, 10.1017/S1446788700025398
Reference: [22] V. A. Skvortsov: Some properties of dyadic primitives.In: New Integrals, Lecture Notes in Mathematics 1419, Springer-Verlag (1988), 167–179. MR 1051928
Reference: [23] V. Skvortsov and P. Sworowski: Characterization of approximate and ${\mathcal{I}}$-approximate Kurzweil-Henstock integrals.Real Analysis Conference Łeba (2001), 121–129.
Reference: [24] P. Sworowski: An answer to some questions of Ene.Real Anal. Exch. 30 (2004/05), 183–192. MR 2127524
Reference: [25] B. S. Thomson: Real Functions.Lecture Notes in Mathematics 1170, Springer-Verlag, 1985. Zbl 0581.26001, MR 0818744
Reference: [26] B. S. Thomson: Derivation bases on the real line.Real Anal. Exch. 8 (1982/83), 67–207, 278–442. 10.2307/44151585
Reference: [27] G. P. Tolstov: Sur l’intégrale de Perron.Matematicheskij Sbornik 5 (1939), 647–659. Zbl 0022.21203
Reference: [28] C. Wang and C. S. Ding: An integral involving Thomson’s local systems.Real Anal. Exch. 19 (1993/94), 248–253. MR 1268851
Reference: [29] L. Zajíček: Porosity and $\sigma $-porosity.Real Anal. Exch. 13 (1987/88), 314–350. MR 0943561
.

Files

Files Size Format View
CzechMathJ_57-2007-1_32.pdf 408.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo