Previous |  Up |  Next

Article

Title: Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers (English)
Author: Carlip, W.
Author: Somer, L.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 447-463
Summary lang: English
.
Category: math
.
Summary: Let $d$ be a fixed positive integer. A Lucas $d$-pseudoprime is a Lucas pseudoprime $N$ for which there exists a Lucas sequence $U(P,Q)$ such that the rank of $N$ in $U(P,Q)$ is exactly $(N - \varepsilon (N))/d$, where $\varepsilon $ is the signature of $U(P,Q)$. We prove here that all but a finite number of Lucas $d$-pseudoprimes are square free. We also prove that all but a finite number of Lucas $d$-pseudoprimes are Carmichael-Lucas numbers. (English)
Keyword: Lucas
Keyword: Fibonacci
Keyword: pseudoprime
Keyword: Fermat
MSC: 11A51
MSC: 11B37
MSC: 11B39
idZBL: Zbl 1174.11016
idMR: MR2309977
.
Date available: 2009-09-24T11:46:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128183
.
Reference: [1] R. Baillie, S. S.  Wagstaff, Jr.: Lucas pseudoprimes.Math. Comput. 35 (1980), 1391–1417. MR 0583518, 10.1090/S0025-5718-1980-0583518-6
Reference: [2] J. Brillhart, D. H.  Lehmer, and J. L.  Selfridge: New primality criteria and factorizations of  $2^m\pm 1$.Math. Comput. 29 (1975), 620–647. MR 0384673
Reference: [3] W. Carlip, E. Jacobson, and L. Somer: Pseudoprimes, perfect numbers, and a problem of Lehmer.Fibonacci Quart. 36 (1998), 361–371. MR 1640372
Reference: [4] W. Carlip, L. Somer: Primitive Lucas $d$-pseudoprimes and Carmichael-Lucas numbers.Colloq. Math (to appear). MR 2291618
Reference: [5] W. Carlip, L. Somer: Bounds for frequencies of residues of regular second-order recurrences modulo $p^r$.In: Number Theory in Progress, Vol.  2 (Zakopané-Kościelisko, 1997). de Gruyter, Berlin (1999), 691–719. MR 1689539
Reference: [6] R. D.  Carmichael: On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$.Ann. of Math. (2) 15 (1913), 30–70. MR 1502458
Reference: [7] É.  Lucas: Théorie des fonctions numériques simplement périodiques.Amer. J. Math. 1 (1878), 184–240, 289–321. (French) MR 1505176
Reference: [8] P. Ribenboim: The New Book of Prime Number Records.Springer-Verlag, New York, 1996. Zbl 0856.11001, MR 1377060
Reference: [9] J. Roberts: Lure of the Integers.Mathematical Association of America, Washington, DC, 1992. MR 1189138
Reference: [10] L. Somer: On Lucas $d$-pseudoprimes.In: Applications of Fibonacci Numbers, Vol.  7 (Graz, 1996). Kluwer Academic Publishers, Dordrecht (1998), 369–375. Zbl 0919.11008, MR 1638463
Reference: [11] H. C.  Williams: On numbers analogous to the Carmichael numbers.Can. Math. Bull. 20 (1977), 133–143. Zbl 0368.10011, MR 0447099, 10.4153/CMB-1977-025-9
.

Files

Files Size Format View
CzechMathJ_57-2007-1_34.pdf 397.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo