Previous |  Up |  Next


Lucas; Fibonacci; pseudoprime; Fermat
Let $d$ be a fixed positive integer. A Lucas $d$-pseudoprime is a Lucas pseudoprime $N$ for which there exists a Lucas sequence $U(P,Q)$ such that the rank of $N$ in $U(P,Q)$ is exactly $(N - \varepsilon (N))/d$, where $\varepsilon $ is the signature of $U(P,Q)$. We prove here that all but a finite number of Lucas $d$-pseudoprimes are square free. We also prove that all but a finite number of Lucas $d$-pseudoprimes are Carmichael-Lucas numbers.
[1] R. Baillie, S. S.  Wagstaff, Jr.: Lucas pseudoprimes. Math. Comput. 35 (1980), 1391–1417. DOI 10.1090/S0025-5718-1980-0583518-6 | MR 0583518
[2] J. Brillhart, D. H.  Lehmer, and J. L.  Selfridge: New primality criteria and factorizations of  $2^m\pm 1$. Math. Comput. 29 (1975), 620–647. MR 0384673
[3] W. Carlip, E. Jacobson, and L. Somer: Pseudoprimes, perfect numbers, and a problem of Lehmer. Fibonacci Quart. 36 (1998), 361–371. MR 1640372
[4] W. Carlip, L. Somer: Primitive Lucas $d$-pseudoprimes and Carmichael-Lucas numbers. Colloq. Math (to appear). MR 2291618
[5] W. Carlip, L. Somer: Bounds for frequencies of residues of regular second-order recurrences modulo $p^r$. In: Number Theory in Progress, Vol.  2 (Zakopané-Kościelisko, 1997). de Gruyter, Berlin (1999), 691–719. MR 1689539
[6] R. D.  Carmichael: On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$. Ann. of Math. (2) 15 (1913), 30–70. MR 1502458
[7] É.  Lucas: Théorie des fonctions numériques simplement périodiques. Amer. J. Math. 1 (1878), 184–240, 289–321. (French) MR 1505176
[8] P. Ribenboim: The New Book of Prime Number Records. Springer-Verlag, New York, 1996. MR 1377060 | Zbl 0856.11001
[9] J. Roberts: Lure of the Integers. Mathematical Association of America, Washington, DC, 1992. MR 1189138
[10] L. Somer: On Lucas $d$-pseudoprimes. In: Applications of Fibonacci Numbers, Vol.  7 (Graz, 1996). Kluwer Academic Publishers, Dordrecht (1998), 369–375. MR 1638463 | Zbl 0919.11008
[11] H. C.  Williams: On numbers analogous to the Carmichael numbers. Can. Math. Bull. 20 (1977), 133–143. DOI 10.4153/CMB-1977-025-9 | MR 0447099 | Zbl 0368.10011
Partner of
EuDML logo