Previous |  Up |  Next

Article

Title: Some inequalities involving upper bounds for some matrix operators. I (English)
Author: Lashkaripour, R.
Author: Foroutannia, D.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 553-572
Summary lang: English
.
Category: math
.
Summary: In this paper we consider the problem of finding upper bounds of certain matrix operators such as Hausdorff, Nörlund matrix, weighted mean and summability on sequence spaces $l_p(w)$ and Lorentz sequence spaces $d(w,p)$, which was recently considered in [9] and [10] and similarly to [14] by Josip Pecaric, Ivan Peric and Rajko Roki. Also, this study is an extension of some works by G. Bennett on $l_p$ spaces, see [1] and [2]. (English)
Keyword: inequality
Keyword: norm
Keyword: summability matrix
Keyword: Hausdorff matrix
Keyword: Nörlund matrix
Keyword: weighted mean matrix
Keyword: weighted sequence space and Lorentz sequence space
MSC: 15A45
MSC: 15A60
MSC: 47-99
MSC: 47A99
MSC: 47B37
idZBL: Zbl 1174.15017
idMR: MR2337614
.
Date available: 2009-09-24T11:47:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128189
.
Reference: [1] G. Bennett: Factorizing the classical inequalities.Mem. Amer. Math. Soc. 576 (1996), 1–130. Zbl 0857.26009, MR 1317938
Reference: [2] G. Bennett: Inequalities complimentary to Hardy.Quart. J. Math. Oxford (2) 49 (1998), 395–432. Zbl 0929.26013, MR 1652236
Reference: [3] D. Borwein and F. P. Cass: Nörlund matrices as bounded operators on $l_p$.Arch. Math. 42 (1984), 464–469. MR 0756700, 10.1007/BF01190697
Reference: [4] D. Borwein: Nörlund operators on $l_p$.Canada. Math. Bull. 36 (1993), 8–14. MR 1205888, 10.4153/CMB-1993-002-x
Reference: [5] G. H. Hardy: An inequality for Hausdorff means.J. London Math. Soc. 18 (1943), 46–50. Zbl 0061.12704, MR 0008854
Reference: [6] G. H. Hardy: Divergent Series.2nd edition, American Mathematical Society, 2000.
Reference: [7] G. H. Hardy and J. E. Littlewood: A maximal theorem with function-theoretic.Acta Math. 54 (1930), 81–116. MR 1555303, 10.1007/BF02547518
Reference: [8] G. H. Hardy, J. E. Littlewood and G. Polya: Inequalities.2nd edition, Cambridge University press, Cambridge, 2001. MR 0944909
Reference: [9] G. J. O. Jameson and R. Lashkaripour: Lower bounds of operators on weighted $l_p$ spaces and Lorentz sequence spaces.Glasgow Math. J. 42 (2000), 211–223. MR 1763740, 10.1017/S0017089500020061
Reference: [10] G. J. O. Jameson and R. Lashkaripour: Norms of certain operators on weighted $l_p$ spaces and Lorentz sequence spaces.J. Inequalities in Pure and Applied Mathematics, 3, Issue 1, Article 6 (2002). MR 1888921
Reference: [11] R. Lashkaripour: Lower bounds and norms of operators on Lorentz sequence spaces.Doctoral dissertation (Lancaster, 1997).
Reference: [12] R. Lashkaripour: Transpose of the Weighted Mean operators on Weighted Sequence Spaces.WSEAS Transaction on Mathematics, Issue 4, 4 (2005), 380–385. MR 2119309
Reference: [13] R. Lashkaripour and D. Foroutannia: Lower Bounds for Matrices on Weighted Sequence Spaces.Journal of Sciences Islamic Republic of IRAN, 18 (2007), 49–56. MR 2499829
Reference: [14] J. Pecaric, I. Peric and R. Roki: On bounds for weighted norms for matrices and integral operators.Linear Algebra and Appl. 326 (2001), 121–135. MR 1815954
.

Files

Files Size Format View
CzechMathJ_57-2007-2_3.pdf 360.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo