Previous |  Up |  Next

Article

Title: Decomposing complete tripartite graphs into closed trails of arbitrary lengths (English)
Author: Billington, Elizabeth J.
Author: Cavenagh, Nicholas J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 523-551
Summary lang: English
.
Category: math
.
Summary: The complete tripartite graph $K_{n,n,n}$ has $3n^2$ edges. For any collection of positive integers $x_1,x_2,\dots ,x_m$ with $\sum _{i=1}^m x_i=3n^2$ and $x_i\ge 3$ for $1\le i\le m$, we exhibit an edge-disjoint decomposition of $K_{n,n,n}$ into closed trails (circuits) of lengths $x_1,x_2,\dots ,x_m$. (English)
Keyword: cycles
Keyword: decomposing complete tripartite graphs
MSC: 05C38
MSC: 05C70
idZBL: Zbl 1174.05100
idMR: MR2337613
.
Date available: 2009-09-24T11:47:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128188
.
Reference: [1] P. Balister: Packing circuits into $K_N$.Combinatorics, Probability and Computing 10 (2001), 463–499. Zbl 1113.05309, MR 1869841, 10.1017/S0963548301004771
Reference: [2] P. Balister: Packing closed trails into dense graphs.J. Combinatorial Theory, Ser. B 88 (2003), 107–118. Zbl 1045.05074, MR 1973263, 10.1016/S0095-8956(02)00039-4
Reference: [3] E. J. Billington: Decomposing complete tripartite graphs into cycles of length $3$ and $4$.Discrete Math. 197/198 (1999), 123–135. MR 1674855
Reference: [4] E. J. Billington: Combinatorial trades: a survey of recent results.Chapter 3 in Designs 2002: Further Computational and Constructive Design Theory (ed. W. D. Wallis), Kluwer Academic Publishers, Boston/Dordrecht/London, 2003, pp. 47–67. Zbl 1056.05014, MR 2041871
Reference: [5] N. J. Cavenagh: Decompositions of complete tripartite graphs into $k$-cycles.Australas. J. Combin. 18 (1998), 193–200. Zbl 0924.05051, MR 1658341
Reference: [6] N. J. Cavenagh: Further decompositions of complete tripartite graphs into $5$-cycles.Discrete Math. 256 (2002), 55–81. Zbl 1009.05108, MR 1927056
Reference: [7] N. J. Cavenagh and E. J. Billington: On decomposing complete tripartite graphs into $5$-cycles.Australas. J. Combin. 22 (2000), 41–62. MR 1795321
Reference: [8] N. J. Cavenagh and E. J. Billington: Decompositions of complete multipartite graphs into cycles of even length.Graphs and Combinatorics 16 (2000), 49–65. MR 1750460, 10.1007/s003730050003
Reference: [9] M. Horňák and M. Woźniak: Decomposition of complete bipartite even graphs into closed trails.Czech. Math. J. 53 (2003), 127–134. MR 1962004, 10.1023/A:1022931710349
Reference: [10] Z. Kocková: Decomposition of even graphs into closed trails.Abstract at Grafy ’03, Javorná, Czech Republic.
Reference: [11] J. Liu: The equipartite Oberwolfach problem with uniform tables.J. Combin. Theory, Ser. A 101 (2003), 20–34. Zbl 1015.05074, MR 1953278
Reference: [12] E. S. Mahmoodian and M. Mirzakhani: Decomposition of complete tripartite graphs into $5$-cycles.In: Combinatorics Advances, Kluwer Academic Publishers, Netherlands, 1995, pp. 235–241. MR 1366852
Reference: [13] D. Sotteau: Decomposition of $K_{m,n}(K^*_{m,n})$ into cycles (circuits) of length $2k$.J. Combinatorial Theory (Series B) 30 (1981), 75–81. Zbl 0463.05048, MR 0609596, 10.1016/0095-8956(81)90093-9
.

Files

Files Size Format View
CzechMathJ_57-2007-2_2.pdf 453.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo