Previous |  Up |  Next


lattice implication algebra; $MTL$-algebra; (prime; ultra; obstinate; Boolean) $LI$-ideal; $ILI$-ideal
A mistake concerning the ultra $LI$-ideal of a lattice implication algebra is pointed out, and some new sufficient and necessary conditions for an $LI$-ideal to be an ultra $LI$-ideal are given. Moreover, the notion of an $LI$-ideal is extended to $MTL$-algebras, the notions of a (prime, ultra, obstinate, Boolean) $LI$-ideal and an $ILI$-ideal of an $MTL$-algebra are introduced, some important examples are given, and the following notions are proved to be equivalent in $MTL$-algebra: (1) prime proper $LI$-ideal and Boolean $LI$-ideal, (2) prime proper $LI$-ideal and $ILI$-ideal, (3) proper obstinate $LI$-ideal, (4) ultra $LI$-ideal.
[1] R. Bělohlávek: Some properties of residuated lattices. Czechoslovak Math. J. 53(128) (2003), 161–171. DOI 10.1023/A:1022935811257 | MR 1962006
[2] W. A. Dudek, X. H. Zhang: On ideals and congruences in $BCC$-algebras. Czechoslovak Math. J. 48(123) (1998), 21–29. MR 1614060
[3] F. Esteva, L. Godo: Monoidal $t$-norm based logic: Towards a logic for left-continuous $t$-norms. Fuzzy Sets Syst. 124 (2001), 271–288. MR 1860848
[4] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, 1998. MR 1900263
[5] S. Jenei, F. Montagna: A proof of standard completeness for Esteva and Godo’s logic  $MTL$. Studia Logica 70 (2002), 183–192. DOI 10.1023/A:1015122331293 | MR 1894392
[6] Y. B. Jun: On $LI$-ideals and prime $LI$-ideals of lattice implication alebras. J.  Korean Math. Soc. 36 (1999), 369–380. MR 1690028
[7] Y. B. Jun, E. H. Roh, Y. Xu: $LI$-ideals in lattice implication algebras. Bull. Korean Math. Soc. 35 (1998), 13–24. MR 1609010
[8] Y. B. Jun, Y. Xu: Fuzzy $LI$-ideals in lattice implication algebras. J.  Fuzzy Math. 7 (1999), 997–1003. MR 1734015 | Zbl 0972.03550
[9] Y. L. Liu, S. Y. Liu, Y. Xu, K. Y. Qin: $ILI$-ideals and prime $LI$-ideals in lattice implication algebras. Information Sciences 155 (2003), 157–175. DOI 10.1016/S0020-0255(03)00159-2 | MR 2007038
[10] C. Noguera, F. Esteva, J. Gispert: On some varieties of $MTL$-algebras. Log.  J.  IGPL 13 (2005), 443–466. DOI 10.1093/jigpal/jzi034 | MR 2163142
[11] K. Y. Qin, Y. Xu, Y. B. Jun: Ultra $LI$-ideals in lattice implication algebras. Czechoslovak Math.  J. 52(127) (2002), 463–468. DOI 10.1023/A:1021759209277 | MR 1923253
[12] E. Turunen: Boolean deductive systems of $BL$-algebras. Arch. Math. Logic 40 (2001), 467–473. DOI 10.1007/s001530100088 | MR 1854896 | Zbl 1030.03048
[13] G. J. Wang: Non-classical Mathematical Logic and Approximate Reasoning. Science Press, Beijing, 2000. (Chinese)
[14] G. J. Wang: $MV$-algebras, $BL$-algebras, $R_0$-algebras and multiple-valued logic. Fuzzy Systems and Mathematics 16 (2002), 1–15. (Chinese) MR 1911031
[15] Y. Xu: Lattice implication algebras. J.  South West Jiaotong University 1 (1993), 20–27. Zbl 0966.03524
[16] Y. Xu, K. Y. Qin: On filters of lattice implication algebras. J.  Fuzzy Math. 1 (1993), 251–260. MR 1230317
[17] Y. Xu, D. Ruan, K. Y. Qin, J. Li: Lattice-valued Logic. An alternative approach to treat fuzziness and incomparability. Studies in Fuzzines and Soft Computing  132, Springer-Verlag, , 2003. MR 2027329
[18] X. H. Zhang, W. H. Li: On fuzzy logic algebraic system  $MTL$. Advances in Systems and Applications 5 (2005), 475–483.
Partner of
EuDML logo