Title:
|
Ultra $LI$-Ideals in lattice implication algebras and $MTL$-algebras (English) |
Author:
|
Zhang, Xiaohong |
Author:
|
Qin, Keyun |
Author:
|
Dudek, Wiesław A. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
2 |
Year:
|
2007 |
Pages:
|
591-605 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A mistake concerning the ultra $LI$-ideal of a lattice implication algebra is pointed out, and some new sufficient and necessary conditions for an $LI$-ideal to be an ultra $LI$-ideal are given. Moreover, the notion of an $LI$-ideal is extended to $MTL$-algebras, the notions of a (prime, ultra, obstinate, Boolean) $LI$-ideal and an $ILI$-ideal of an $MTL$-algebra are introduced, some important examples are given, and the following notions are proved to be equivalent in $MTL$-algebra: (1) prime proper $LI$-ideal and Boolean $LI$-ideal, (2) prime proper $LI$-ideal and $ILI$-ideal, (3) proper obstinate $LI$-ideal, (4) ultra $LI$-ideal. (English) |
Keyword:
|
lattice implication algebra |
Keyword:
|
$MTL$-algebra |
Keyword:
|
(prime |
Keyword:
|
ultra |
Keyword:
|
obstinate |
Keyword:
|
Boolean) $LI$-ideal |
Keyword:
|
$ILI$-ideal |
MSC:
|
03G10 |
MSC:
|
06B10 |
MSC:
|
54E15 |
idZBL:
|
Zbl 1174.03349 |
idMR:
|
MR2337617 |
. |
Date available:
|
2009-09-24T11:47:53Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128192 |
. |
Reference:
|
[1] R. Bělohlávek: Some properties of residuated lattices.Czechoslovak Math. J. 53(128) (2003), 161–171. MR 1962006, 10.1023/A:1022935811257 |
Reference:
|
[2] W. A. Dudek, X. H. Zhang: On ideals and congruences in $BCC$-algebras.Czechoslovak Math. J. 48(123) (1998), 21–29. MR 1614060, 10.1023/A:1022407325810 |
Reference:
|
[3] F. Esteva, L. Godo: Monoidal $t$-norm based logic: Towards a logic for left-continuous $t$-norms.Fuzzy Sets Syst. 124 (2001), 271–288. MR 1860848 |
Reference:
|
[4] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer Academic Publishers, 1998. MR 1900263 |
Reference:
|
[5] S. Jenei, F. Montagna: A proof of standard completeness for Esteva and Godo’s logic $MTL$.Studia Logica 70 (2002), 183–192. MR 1894392, 10.1023/A:1015122331293 |
Reference:
|
[6] Y. B. Jun: On $LI$-ideals and prime $LI$-ideals of lattice implication alebras.J. Korean Math. Soc. 36 (1999), 369–380. MR 1690028 |
Reference:
|
[7] Y. B. Jun, E. H. Roh, Y. Xu: $LI$-ideals in lattice implication algebras.Bull. Korean Math. Soc. 35 (1998), 13–24. MR 1609010 |
Reference:
|
[8] Y. B. Jun, Y. Xu: Fuzzy $LI$-ideals in lattice implication algebras.J. Fuzzy Math. 7 (1999), 997–1003. Zbl 0972.03550, MR 1734015 |
Reference:
|
[9] Y. L. Liu, S. Y. Liu, Y. Xu, K. Y. Qin: $ILI$-ideals and prime $LI$-ideals in lattice implication algebras.Information Sciences 155 (2003), 157–175. MR 2007038, 10.1016/S0020-0255(03)00159-2 |
Reference:
|
[10] C. Noguera, F. Esteva, J. Gispert: On some varieties of $MTL$-algebras.Log. J. IGPL 13 (2005), 443–466. MR 2163142, 10.1093/jigpal/jzi034 |
Reference:
|
[11] K. Y. Qin, Y. Xu, Y. B. Jun: Ultra $LI$-ideals in lattice implication algebras.Czechoslovak Math. J. 52(127) (2002), 463–468. MR 1923253, 10.1023/A:1021759209277 |
Reference:
|
[12] E. Turunen: Boolean deductive systems of $BL$-algebras.Arch. Math. Logic 40 (2001), 467–473. Zbl 1030.03048, MR 1854896, 10.1007/s001530100088 |
Reference:
|
[13] G. J. Wang: Non-classical Mathematical Logic and Approximate Reasoning.Science Press, Beijing, 2000. (Chinese) |
Reference:
|
[14] G. J. Wang: $MV$-algebras, $BL$-algebras, $R_0$-algebras and multiple-valued logic.Fuzzy Systems and Mathematics 16 (2002), 1–15. (Chinese) MR 1911031 |
Reference:
|
[15] Y. Xu: Lattice implication algebras.J. South West Jiaotong University 1 (1993), 20–27. Zbl 0966.03524 |
Reference:
|
[16] Y. Xu, K. Y. Qin: On filters of lattice implication algebras.J. Fuzzy Math. 1 (1993), 251–260. MR 1230317 |
Reference:
|
[17] Y. Xu, D. Ruan, K. Y. Qin, J. Li: Lattice-valued Logic. An alternative approach to treat fuzziness and incomparability.Studies in Fuzzines and Soft Computing 132, Springer-Verlag, , 2003. MR 2027329 |
Reference:
|
[18] X. H. Zhang, W. H. Li: On fuzzy logic algebraic system $MTL$.Advances in Systems and Applications 5 (2005), 475–483. |
. |