Previous |  Up |  Next

Article

Title: Ultra $LI$-Ideals in lattice implication algebras and $MTL$-algebras (English)
Author: Zhang, Xiaohong
Author: Qin, Keyun
Author: Dudek, Wiesław A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 591-605
Summary lang: English
.
Category: math
.
Summary: A mistake concerning the ultra $LI$-ideal of a lattice implication algebra is pointed out, and some new sufficient and necessary conditions for an $LI$-ideal to be an ultra $LI$-ideal are given. Moreover, the notion of an $LI$-ideal is extended to $MTL$-algebras, the notions of a (prime, ultra, obstinate, Boolean) $LI$-ideal and an $ILI$-ideal of an $MTL$-algebra are introduced, some important examples are given, and the following notions are proved to be equivalent in $MTL$-algebra: (1) prime proper $LI$-ideal and Boolean $LI$-ideal, (2) prime proper $LI$-ideal and $ILI$-ideal, (3) proper obstinate $LI$-ideal, (4) ultra $LI$-ideal. (English)
Keyword: lattice implication algebra
Keyword: $MTL$-algebra
Keyword: (prime
Keyword: ultra
Keyword: obstinate
Keyword: Boolean) $LI$-ideal
Keyword: $ILI$-ideal
MSC: 03G10
MSC: 06B10
MSC: 54E15
idZBL: Zbl 1174.03349
idMR: MR2337617
.
Date available: 2009-09-24T11:47:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128192
.
Reference: [1] R. Bělohlávek: Some properties of residuated lattices.Czechoslovak Math. J. 53(128) (2003), 161–171. MR 1962006, 10.1023/A:1022935811257
Reference: [2] W. A. Dudek, X. H. Zhang: On ideals and congruences in $BCC$-algebras.Czechoslovak Math. J. 48(123) (1998), 21–29. MR 1614060, 10.1023/A:1022407325810
Reference: [3] F. Esteva, L. Godo: Monoidal $t$-norm based logic: Towards a logic for left-continuous $t$-norms.Fuzzy Sets Syst. 124 (2001), 271–288. MR 1860848
Reference: [4] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer Academic Publishers, 1998. MR 1900263
Reference: [5] S. Jenei, F. Montagna: A proof of standard completeness for Esteva and Godo’s logic  $MTL$.Studia Logica 70 (2002), 183–192. MR 1894392, 10.1023/A:1015122331293
Reference: [6] Y. B. Jun: On $LI$-ideals and prime $LI$-ideals of lattice implication alebras.J.  Korean Math. Soc. 36 (1999), 369–380. MR 1690028
Reference: [7] Y. B. Jun, E. H. Roh, Y. Xu: $LI$-ideals in lattice implication algebras.Bull. Korean Math. Soc. 35 (1998), 13–24. MR 1609010
Reference: [8] Y. B. Jun, Y. Xu: Fuzzy $LI$-ideals in lattice implication algebras.J.  Fuzzy Math. 7 (1999), 997–1003. Zbl 0972.03550, MR 1734015
Reference: [9] Y. L. Liu, S. Y. Liu, Y. Xu, K. Y. Qin: $ILI$-ideals and prime $LI$-ideals in lattice implication algebras.Information Sciences 155 (2003), 157–175. MR 2007038, 10.1016/S0020-0255(03)00159-2
Reference: [10] C. Noguera, F. Esteva, J. Gispert: On some varieties of $MTL$-algebras.Log.  J.  IGPL 13 (2005), 443–466. MR 2163142, 10.1093/jigpal/jzi034
Reference: [11] K. Y. Qin, Y. Xu, Y. B. Jun: Ultra $LI$-ideals in lattice implication algebras.Czechoslovak Math.  J. 52(127) (2002), 463–468. MR 1923253, 10.1023/A:1021759209277
Reference: [12] E. Turunen: Boolean deductive systems of $BL$-algebras.Arch. Math. Logic 40 (2001), 467–473. Zbl 1030.03048, MR 1854896, 10.1007/s001530100088
Reference: [13] G. J. Wang: Non-classical Mathematical Logic and Approximate Reasoning.Science Press, Beijing, 2000. (Chinese)
Reference: [14] G. J. Wang: $MV$-algebras, $BL$-algebras, $R_0$-algebras and multiple-valued logic.Fuzzy Systems and Mathematics 16 (2002), 1–15. (Chinese) MR 1911031
Reference: [15] Y. Xu: Lattice implication algebras.J.  South West Jiaotong University 1 (1993), 20–27. Zbl 0966.03524
Reference: [16] Y. Xu, K. Y. Qin: On filters of lattice implication algebras.J.  Fuzzy Math. 1 (1993), 251–260. MR 1230317
Reference: [17] Y. Xu, D. Ruan, K. Y. Qin, J. Li: Lattice-valued Logic. An alternative approach to treat fuzziness and incomparability.Studies in Fuzzines and Soft Computing  132, Springer-Verlag, , 2003. MR 2027329
Reference: [18] X. H. Zhang, W. H. Li: On fuzzy logic algebraic system  $MTL$.Advances in Systems and Applications 5 (2005), 475–483.
.

Files

Files Size Format View
CzechMathJ_57-2007-2_6.pdf 352.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo