Previous |  Up |  Next

Article

Title: Extensional subobjects in categories of $\Omega$-fuzzy sets (English)
Author: Močkoř, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 631-645
Summary lang: English
.
Category: math
.
Summary: Two categories $\mathbb{Set}(\Omega )$ and $\mathbb{SetF}(\Omega )$ of fuzzy sets over an $MV$-algebra $\Omega $ are investigated. Full subcategories of these categories are introduced consisting of objects $(\mathop {{\mathrm sub}}(A,\delta )$, $\sigma )$, where $\mathop {{\mathrm sub}}(A,\delta )$ is a subset of all extensional subobjects of an object $(A,\delta )$. It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories. (English)
Keyword: $MV$-algebras
Keyword: similarity relation
Keyword: quasi-reflective subcategory
MSC: 03E72
MSC: 06D35
MSC: 18A40
idZBL: Zbl 1174.06320
idMR: MR2337619
.
Date available: 2009-09-24T11:48:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128194
.
Reference: [1] Eytan, M.: Fuzzy sets: a topos-logical point of view.Fuzzy Sets and Systems 5 (1981), 47–67. Zbl 0453.03059, MR 0595953, 10.1016/0165-0114(81)90033-6
Reference: [2] Goguen, J.A.: L-fuzzy sets.J. Math. Anal. Appli. 18 (1967), 145–174. Zbl 0145.24404, MR 0224391, 10.1016/0022-247X(67)90189-8
Reference: [3] Higgs, D.: A category approach to Boolean-valued set theory.Manuscript, University of Waterloo, 1973.
Reference: [4] Höhle, U.: Presheaves over GL-monoids.Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, New York (1995), 127–157. MR 1345643
Reference: [5] Höhle, U.: M-Valued sets and sheaves over integral, commutative cl-monoids.Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, Boston (1992), 33–72. MR 1154568
Reference: [6] Höhle, U.: Classification of Subsheaves over GL-algebras.Proceedings of Logic Colloquium 98 Prague, Springer Verlag (1999), 238–261. MR 1743263
Reference: [7] Höhle, U.: Commutative, residuated l-monoids.Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ. Dordrecht, New York (1995), 53–106. MR 1345641
Reference: [8] Höhle, U.: Monoidal closed categories, weak topoi and generalized logics.Fuzzy Sets and Systems 42 (1991), 15–35. MR 1123574, 10.1016/0165-0114(91)90086-6
Reference: [9] Močkoř, J.: Complete subobjects of fuzzy sets over $MV$-algebras.Czech. Math. J. 129 (2004), 379–392. MR 2059258, 10.1023/B:CMAJ.0000042376.21044.1a
Reference: [10] Novák, V., Perfilijeva, I., Močkoř, J.: Mathematical principles of fuzzy logic.Kluwer Academic Publishers, Boston, Dordrecht, London, 1999. MR 1733839
Reference: [11] Ponasse, D.: Categorical studies of fuzzy sets.Fuzzy Sets and Systems 28 (1988), 235–244. Zbl 0675.03032, MR 0976664, 10.1016/0165-0114(88)90031-0
.

Files

Files Size Format View
CzechMathJ_57-2007-2_8.pdf 357.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo