Title:
|
Extensional subobjects in categories of $\Omega$-fuzzy sets (English) |
Author:
|
Močkoř, Jiří |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
2 |
Year:
|
2007 |
Pages:
|
631-645 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Two categories $\mathbb{Set}(\Omega )$ and $\mathbb{SetF}(\Omega )$ of fuzzy sets over an $MV$-algebra $\Omega $ are investigated. Full subcategories of these categories are introduced consisting of objects $(\mathop {{\mathrm sub}}(A,\delta )$, $\sigma )$, where $\mathop {{\mathrm sub}}(A,\delta )$ is a subset of all extensional subobjects of an object $(A,\delta )$. It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories. (English) |
Keyword:
|
$MV$-algebras |
Keyword:
|
similarity relation |
Keyword:
|
quasi-reflective subcategory |
MSC:
|
03E72 |
MSC:
|
06D35 |
MSC:
|
18A40 |
idZBL:
|
Zbl 1174.06320 |
idMR:
|
MR2337619 |
. |
Date available:
|
2009-09-24T11:48:07Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128194 |
. |
Reference:
|
[1] Eytan, M.: Fuzzy sets: a topos-logical point of view.Fuzzy Sets and Systems 5 (1981), 47–67. Zbl 0453.03059, MR 0595953, 10.1016/0165-0114(81)90033-6 |
Reference:
|
[2] Goguen, J.A.: L-fuzzy sets.J. Math. Anal. Appli. 18 (1967), 145–174. Zbl 0145.24404, MR 0224391, 10.1016/0022-247X(67)90189-8 |
Reference:
|
[3] Higgs, D.: A category approach to Boolean-valued set theory.Manuscript, University of Waterloo, 1973. |
Reference:
|
[4] Höhle, U.: Presheaves over GL-monoids.Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, New York (1995), 127–157. MR 1345643 |
Reference:
|
[5] Höhle, U.: M-Valued sets and sheaves over integral, commutative cl-monoids.Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, Boston (1992), 33–72. MR 1154568 |
Reference:
|
[6] Höhle, U.: Classification of Subsheaves over GL-algebras.Proceedings of Logic Colloquium 98 Prague, Springer Verlag (1999), 238–261. MR 1743263 |
Reference:
|
[7] Höhle, U.: Commutative, residuated l-monoids.Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ. Dordrecht, New York (1995), 53–106. MR 1345641 |
Reference:
|
[8] Höhle, U.: Monoidal closed categories, weak topoi and generalized logics.Fuzzy Sets and Systems 42 (1991), 15–35. MR 1123574, 10.1016/0165-0114(91)90086-6 |
Reference:
|
[9] Močkoř, J.: Complete subobjects of fuzzy sets over $MV$-algebras.Czech. Math. J. 129 (2004), 379–392. MR 2059258, 10.1023/B:CMAJ.0000042376.21044.1a |
Reference:
|
[10] Novák, V., Perfilijeva, I., Močkoř, J.: Mathematical principles of fuzzy logic.Kluwer Academic Publishers, Boston, Dordrecht, London, 1999. MR 1733839 |
Reference:
|
[11] Ponasse, D.: Categorical studies of fuzzy sets.Fuzzy Sets and Systems 28 (1988), 235–244. Zbl 0675.03032, MR 0976664, 10.1016/0165-0114(88)90031-0 |
. |