Previous |  Up |  Next

Article

Title: On the existence and the stability of solutions for higher-order semilinear Dirichlet problems (English)
Author: Galewski, M.
Author: Płócienniczak, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 647-669
Summary lang: English
.
Category: math
.
Summary: We investigate the existence and stability of solutions for higher-order two-point boundary value problems in case the differential operator is not necessarily positive definite, i.e. with superlinear nonlinearities. We write an abstract realization of the Dirichlet problem and provide abstract existence and stability results which are further applied to concrete problems. (English)
Keyword: Dirichlet problem
MSC: 34B15
MSC: 35J20
MSC: 35J40
MSC: 35J60
MSC: 47N20
idZBL: Zbl 1174.35029
idMR: MR2337620
.
Date available: 2009-09-24T11:48:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128195
.
Reference: [1] A. Boucherif, Nawal Al-Malki: Solvability of a two point boundary value problem.Int. J.  Differ. Equ. Appl. 8 (2003), 129–135. MR 2068777
Reference: [2] D. Delbosco: A two point boundary value problem for a second order differential equation with quadratic growth in the derivative.Differ. Integral Equ. 16 (2003), 653–662. Zbl 1048.34044, MR 1973273
Reference: [3] G. Dinca, P. Jeblean: Some existence results for a class of nonlinear equations involving a duality mapping.Nonlinear Anal., Theory Methods Appl. 46 (2001), 347–363. MR 1851857, 10.1016/S0362-546X(00)00120-6
Reference: [4] I. Ekeland, R. Temam: Convex Analysis and Variational Problems.North-Holland, Amsterdam, 1976. MR 0463994
Reference: [5] M. Galewski: New variational principle and duality for an abstract semilinear Dirichlet problem.Ann. Pol. Math. 82 (2003), 51–60. MR 2041397, 10.4064/ap82-1-6
Reference: [6] M. Galewski: Stability of solutions for an abstract Dirichlet problem.Ann. Pol. Math. 83 (2004), 273–280. Zbl 1097.47053, MR 2111714, 10.4064/ap83-3-9
Reference: [7] M. Galewski: The existence of solutions for a semilinear abstract Dirichlet problem.Georgian Math. J. 11 (2004), 243–254. Zbl 1083.47048, MR 2084987
Reference: [8] D. Idczak: Stability in semilinear problems.J.  Differ. Equations 162 (2000), 64–90. Zbl 0952.35050, MR 1741873, 10.1006/jdeq.1999.3681
Reference: [9] D. Idczak, A. Rogowski: On a generalization of Krasnoselskii’s theorem.J.  Aust. Math. Soc. 72 (2002), 389–394. MR 1902207, 10.1017/S1446788700150001
Reference: [10] T. Kato: Perturbation Theory for Linear Operators.Springer-Verlag, Berlin-Heidelberg-New York, 1980. Zbl 0435.47001
Reference: [11] Y. Li: Positive solutions of fourth order periodic boundary value problem.Nonlinear Anal., Theory Methods Appl. 54 (2003), 1069–1078. MR 1993312, 10.1016/S0362-546X(03)00127-5
Reference: [12] Y. Liu, W. Ge: Solvability of a two point boundary value problem at resonance for high-order ordinary differential equations.Math. Sci. Res. J., 7 (2003), 406–429. MR 2020490
Reference: [13] Y. Liu, W. Ge: Solvability of a two point boundary value problems for fourth-order nonlinear differential equations at resonance.Z.  Anal. Anwend. 22 (2003), 977–989. MR 2036940
Reference: [14] A. Lomtatidze, L. Malaguti: On a two-point boundary value problem for the second order ordinary differential equations with singularities.Nonlinear Anal., Theory Methods Appl. 52 (2003), 1553–1567. MR 1951507, 10.1016/S0362-546X(01)00148-1
Reference: [15] J. Mawhin: Problemes de Dirichlet variationnels non linéaires.Presses Univ. Montréal, Montréal, 1987. (French) Zbl 0644.49001, MR 0906453
Reference: [16] A. Nowakowski, A. Rogowski: Dependence on parameters for the Dirichlet problem with superlinear nonlinearities.Topol. Methods Nonlinear Anal. 16 (2000), 145–130. MR 1805044, 10.12775/TMNA.2000.035
Reference: [17] A. Nowakowski, A. Rogowski: On the new variational principles and duality for periodic of Lagrange equations with superlinear nonlinearities.J.  Math. Anal. Appl. 264 (2001), 168–181. MR 1868335, 10.1006/jmaa.2001.7667
Reference: [18] D. R.  Smart: Fixed Point Theorems.Cambridge University Press, London-New York, 1974. Zbl 0297.47042, MR 0467717
Reference: [19] S. Walczak: On the continuous dependence on parameters of solutions of the Dirichlet problem. Part I.  Coercive case, Part  II. The case of saddle points.Bull. Cl. Sci., VII.  Sér., Acad. R. Belg. 6 (1995), 247–273. MR 1427337
Reference: [20] S. Walczak: Continuous dependence on parameters and boundary data for nonlinear P.D.E. coercive case.Differ. Integral Equ. 11 (1998), 35–46. Zbl 1042.35004, MR 1607976
.

Files

Files Size Format View
CzechMathJ_57-2007-2_9.pdf 394.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo