Previous |  Up |  Next

Article

Title: Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$ (English)
Author: Ferrando, J. C.
Author: Ruiz, L. M. Sánchez
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 679-688
Summary lang: English
.
Category: math
.
Summary: If $(\Omega ,\Sigma ) $ is a measurable space and $X$ a Banach space, we provide sufficient conditions on $\Sigma $ and $X$ in order to guarantee that $\mathop {\mathrm bvca}( \Sigma ,X) $, the Banach space of all $X$-valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of $c_{0}$ if and only if $X$ does. (English)
Keyword: countably additive vector measure of bounded variation
Keyword: Pettis integrable function space
Keyword: copy of $c_{0}$
Keyword: copy of $\ell _{\infty }$
MSC: 28A33
MSC: 28B05
MSC: 46B25
MSC: 46E27
MSC: 46G10
idZBL: Zbl 1174.46016
idMR: MR2337622
.
Date available: 2009-09-24T11:48:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128197
.
Reference: [1] J. Bourgain: An averaging result for $c_{0}$-sequences.Bull. Soc. Math. Belg., Sér. B 30 (1978), 83–87. Zbl 0417.46019, MR 0549653
Reference: [2] P. Cembranos, J.  Mendoza: Banach Spaces of Vector-Valued Functions. Lecture Notes in Mathematics Vol.  1676.Springer-Verlag, Berlin, 1997. MR 1489231
Reference: [3] J.  Diestel: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer-Verlag, New York-Heidelberg-Berlin, 1984. MR 0737004
Reference: [4] J.  Diestel, J.  Uhl: Vector Measures. Mathematical Surveys, No  15.Am. Math. Soc., Providence, 1977. MR 0453964
Reference: [5] L.  Drewnowski: When does $\mathop {\mathrm ca}( \Sigma ,Y) $ contain a copy of  $\ell _{\infty }$ or $c_{0}$.Proc. Am. Math. Soc. 109 (1990), 747–752. MR 1012927, 10.1090/S0002-9939-1990-1012927-4
Reference: [6] J. C.  Ferrando: When does $( \Sigma ,X)$ contain a copy of  $\ell _{\infty }$.Math. Scand. 74 (1994), 271–274. MR 1298368, 10.7146/math.scand.a-12496
Reference: [7] P. Habala, P.  Hájek, and V. Zizler: Introduction to Banach Space.Matfyzpress, Prague, 1996.
Reference: [8] E. Hewitt, K.  Stromberg: Real and Abstract Analysis. Graduate Texts in Mathematics  25.Springer-Verlag, New York-Heidelberg-Berlin, 1975. MR 0367121
Reference: [9] K.  Musial: The weak Radon-Nikodým property in Banach spaces.Stud. Math. 64 (1979), 151–173. Zbl 0405.46015, MR 0537118, 10.4064/sm-64-2-151-174
Reference: [10] E. Saab, P.  Saab: On complemented copies of  $c_{0} $ in injective tensor products.Contemp. Math. 52 (1986), 131–135. 10.1090/conm/052/840704
Reference: [11] M.  Talagrand: Quand l’espace des mesures a variation bornée est-it faiblement sequentiellement complet.Proc. Am. Math. Soc. 90 (1984), 285–288. (French) MR 0727251
.

Files

Files Size Format View
CzechMathJ_57-2007-2_11.pdf 347.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo