Previous |  Up |  Next

Article

Title: The ap-Denjoy and ap-Henstock integrals (English)
Author: Park, Jae Myung
Author: Oh, Jae Jung
Author: Park, Chun-Gil
Author: Lee, Deuk Ho
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 689-696
Summary lang: English
.
Category: math
.
Summary: In this paper we define the ap-Denjoy integral and show that the ap-Denjoy integral is equivalent to the ap-Henstock integral and the integrals are equal. (English)
Keyword: approximate Lusin function
Keyword: ap-Denjoy integral
Keyword: ap-Henstock integral
Keyword: choice
MSC: 26A39
MSC: 28B05
idZBL: Zbl 1174.26308
idMR: MR2337623
.
Date available: 2009-09-24T11:48:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128198
.
Reference: [1] P. S.  Bullen: The Burkill approximately continuous integral.J.  Austral. Math. Soc. (Ser.  A) 35 (1983), 236–253. Zbl 0533.26006, MR 0704431, 10.1017/S1446788700025738
Reference: [2] T. S.  Chew, K.  Liao: The descriptive definitions and properties of the AP-integral and their application to the problem of controlled convergence.Real Anal. Exch. 19 (1994), 81–97. MR 1268833
Reference: [3] R. A.  Gordon: Some comments on the McShane and Henstock integrals.Real Anal. Exch. 23 (1997), 329–341. Zbl 0943.26023, MR 1609917, 10.2307/44152859
Reference: [4] R. A.  Gordon: The Integrals of Lebesgue, Denjoy, Perron and Henstock.Amer. Math. Soc., Providence, 1994. Zbl 0807.26004, MR 1288751
Reference: [5] J.  Kurzweil: On multiplication of Perron integrable functions.Czechoslovak Math.  J. 23(98) (1973), 542–566. Zbl 0269.26007, MR 0335705
Reference: [6] J.  Kurzweil, J.  Jarník: Perron type integration on n-dimensional intervals as an extension of integration of step functions by strong equiconvergence.Czechoslovak Math.  J. 46(121) (1996), 1–20. MR 1371683
Reference: [7] T. Y.  Lee: On a generalized dominated convergence theorem for the AP  integral.Real Anal. Exch. 20 (1995), 77–88. Zbl 0820.26006, MR 1313672
Reference: [8] K.  Liao: On the descriptive definition of the Burkill approximately continuous integral.Real Anal. Exch. 18 (1993), 253–260. Zbl 0774.26006, MR 1205520, 10.2307/44133066
Reference: [9] Y. J.  Lin: On the equivalence of four convergence theorems for the AP-integral.Real Anal. Exch. 19 (1994), 155–164. Zbl 0813.26002, MR 1268841
Reference: [10] J. M.  Park: Bounded convergence theorem and integral operator for operator valued measures.Czechoslovak Math.  J. 47(122) (1997), 425–430. Zbl 0903.46040, MR 1461422, 10.1023/A:1022403232211
Reference: [11] J. M.  Park: The Denjoy extension of the Riemann and McShane integrals.Czechoslovak Math.  J. 50(125) (2000), 615–625. Zbl 1079.28502, MR 1777481, 10.1023/A:1022845929564
Reference: [12] J. M.  Park, C. G.  Park, J. B.  Kim, D. H.  Lee, and W. Y.  Lee: The $s$-Perron, sap-Perron and ap-McShane integrals.Czechoslovak Math.  J. 54(129) (2004), 545–557. MR 2086715, 10.1007/s10587-004-6407-7
Reference: [13] A. M.  Russell: Stieltjes type integrals.J.  Austr. Math. Soc. (Ser.  A) 20 (1975), 431–448. Zbl 0313.26012, MR 0393379, 10.1017/S1446788700016153
Reference: [14] A. M.  Russell: A Banach space of functions of generalized variation.Bull. Aust. Math. Soc. 15 (1976), 431–438. Zbl 0333.46025, MR 0430180, 10.1017/S0004972700022863
.

Files

Files Size Format View
CzechMathJ_57-2007-2_12.pdf 336.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo