Previous |  Up |  Next

Article

Title: A new characterization of Anderson’s inequality in $C_1$-classes (English)
Author: Mecheri, S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 697-703
Summary lang: English
.
Category: math
.
Summary: Let $\Cal H$ be a separable infinite dimensional complex Hilbert space, and let $\Cal L(\Cal H)$ denote the algebra of all bounded linear operators on $\Cal H$ into itself. Let $A=(A_{1},A_{2},\dots ,A_{n})$, $B=(B_{1},B_{2},\dots ,B_{n})$ be $n$-tuples of operators in $\Cal L(\Cal H)$; we define the elementary operators $\Delta_{A,B}\:\Cal L(\Cal H)\mapsto\Cal L(\Cal H)$ by $\Delta_{A,B}(X)=\sum_{i=1}^nA_iXB_i-X.$ In this paper, we characterize the class of pairs of operators $A,B\in\Cal L(\Cal H)$ satisfying Putnam-Fuglede’s property, i.e, the class of pairs of operators $A,B\in\Cal L(\Cal H)$ such that $\sum_{i=1}^nB_iTA_i=T$ implies $\sum_{i=1}^nA_i^*TB_i^*=T$ for all $T\in\Cal C_1(\Cal H)$ (trace class operators). The main result is the equivalence between this property and the fact that the ultraweak closure of the range of the elementary operator $\Delta_{A,B}$ is closed under taking adjoints. This leads us to give a new characterization of the orthogonality (in the sense of Birkhoff) of the range of an elementary operator and its kernel in $C_1$ classes. (English)
Keyword: $C_1$-class
Keyword: generalized $p$-symmetric operator
Keyword: Anderson Inequality
MSC: 47B20
MSC: 47B47
idZBL: Zbl 1174.47025
idMR: MR2337624
.
Date available: 2009-09-24T11:48:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128199
.
Reference: [1] J. H. Anderson: On normal derivation.Proc. Amer. Math. Soc. 38 (1973), 135–140. MR 0312313, 10.1090/S0002-9939-1973-0312313-6
Reference: [2] J. H. Anderson, J. W.  Bunce, J. A. Deddens, and J. P. Williams: C$^{*}$  algebras and derivation ranges.Acta Sci. Math. 40 (1978), 211–227. MR 0515202
Reference: [3] S. Bouali, J. Charles: Extension de la notion d’opérateur D-symétique I.Acta Sci. Math. 58 (1993), 517–525. (French) MR 1264254
Reference: [4] S. Mecheri: Generalized P-symmetric operators.Proc. Roy. Irish Acad. 104A (2004), 173–175. MR 2140424
Reference: [5] S.  Mecheri, M.  Bounkhel: Some variants of Anderson’s inequality in $C_{1}$-classes.JIPAM, J.  Inequal. Pure Appl. Math. 4 (2003), 1–6. MR 1966004
Reference: [6] S. Mecheri: On the range of elementary operators.Integral Equations Oper. Theory 53 (2005), 403–409. Zbl 1120.47024, MR 2186098, 10.1007/s00020-004-1327-3
Reference: [7] V. S. Shulman: On linear equation with normal coefficient.Dokl. Akad. Nauk USSR 2705 (1983), 1070–1073. (Russian) MR 0714059
Reference: [8] J. P. Williams: On the range of a derivation.Pac. J. Math. 38 (1971), 273–279. Zbl 0205.42102, MR 0308809
.

Files

Files Size Format View
CzechMathJ_57-2007-2_13.pdf 315.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo