Full entry |
PDF
(0.2 MB)
Feedback

coarse-grained quantum logic; group-valued measure; measure extension

References:

[1] M. R. Darnel: **Theory of Lattice-Ordered Groups**. Dekker, New York, 1995. MR 1304052 | Zbl 0810.06016

[2] A. De Simone, M. Navara and P. Pták: **Extensions of states on concrete finite logics**. (to appear).

[3] S. Gudder and J. P. Marchand: **A coarse-grained measure theory**. Bull. Polish Acad. Sci. Math. 28 (1980), 557–564. MR 0628642

[4] S. Gudder: **Stochastic Methods in Quantum Mechanics**. North Holland, 1979. MR 0543489 | Zbl 0439.46047

[5] S. Gudder: **Quantum probability spaces**. Proc. Amer. Math. Soc. 21 (1969), 286–302. MR 0243793 | Zbl 0183.28703

[6] S. Gudder: **An extension of classical measure theory**. SIAM 26 (1984), 71–89. DOI 10.1137/1026002 | MR 0735076 | Zbl 0559.28003

[7] P. de Lucia and P. Pták: **Quantum logics with classically determined states**. Colloq. Math. 80 (1999), 147–154. MR 1684578

[8] M. Navara and P. Pták: **Almost Boolean orthomodular posets**. J. Pure Appl. Algebra 60 (1989), 105–111. DOI 10.1016/0022-4049(89)90108-4 | MR 1014608

[9] P. Ovtchinikoff: **Measures on the Gudder-Marchand logics**. Constructive Theory of Functions and Functional Analysis 8 (1992), 95–98. (Russian) MR 1231108

[10] P. Pták: **Some nearly Boolean orthomodular posets**. Proc. Amer. Math. Soc. 126 (1998), 2039–2046. DOI 10.1090/S0002-9939-98-04403-7 | MR 1452822

[11] P. Pták: **Concrete quantum logics**. Internat. J. Theoret. Phys. 39 (2000), 827–837. DOI 10.1023/A:1003626929648 | MR 1792201

[12] P. Pták and S. Pulmannová: **Orthomodular Structures as Quantum Logics**. Kluwer, Dordrecht/Boston/London, 1991. MR 1176314