Previous |  Up |  Next

Article

Title: Group-valued measures on coarse-grained quantum logics (English)
Author: de Simone, Anna
Author: Pták, Pavel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 737-746
Summary lang: English
.
Category: math
.
Summary: In it was shown that a (real) signed measure on a cyclic coarse-grained quantum logic can be extended, as a signed measure, over the entire power algebra. Later () this result was re-proved (and further improved on) and, moreover, the non-negative measures were shown to allow for extensions as non-negative measures. In both cases the proof technique used was the technique of linear algebra. In this paper we further generalize the results cited by extending group-valued measures on cyclic coarse-grained quantum logics (or non-negative group-valued measures for lattice-ordered groups). Obviously, the proof technique is entirely different from that of the preceding papers. In addition, we provide a new combinatorial argument for describing all atoms of cyclic coarse-grained quantum logics. (English)
Keyword: coarse-grained quantum logic
Keyword: group-valued measure
Keyword: measure extension
MSC: 03G12
MSC: 06C15
MSC: 28A55
MSC: 28A99
MSC: 28B10
MSC: 81P10
idZBL: Zbl 1174.03350
idMR: MR2337627
.
Date available: 2009-09-24T11:49:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128202
.
Reference: [1] M. R. Darnel: Theory of Lattice-Ordered Groups.Dekker, New York, 1995. Zbl 0810.06016, MR 1304052
Reference: [2] A. De Simone, M. Navara and P. Pták: Extensions of states on concrete finite logics.(to appear).
Reference: [3] S. Gudder and J. P. Marchand: A coarse-grained measure theory.Bull. Polish Acad. Sci. Math. 28 (1980), 557–564. MR 0628642
Reference: [4] S. Gudder: Stochastic Methods in Quantum Mechanics.North Holland, 1979. Zbl 0439.46047, MR 0543489
Reference: [5] S. Gudder: Quantum probability spaces.Proc. Amer. Math. Soc. 21 (1969), 286–302. Zbl 0183.28703, MR 0243793
Reference: [6] S. Gudder: An extension of classical measure theory.SIAM 26 (1984), 71–89. Zbl 0559.28003, MR 0735076, 10.1137/1026002
Reference: [7] P. de Lucia and P. Pták: Quantum logics with classically determined states.Colloq. Math. 80 (1999), 147–154. MR 1684578, 10.4064/cm-80-1-147-154
Reference: [8] M. Navara and P. Pták: Almost Boolean orthomodular posets.J. Pure Appl. Algebra 60 (1989), 105–111. MR 1014608, 10.1016/0022-4049(89)90108-4
Reference: [9] P. Ovtchinikoff: Measures on the Gudder-Marchand logics.Constructive Theory of Functions and Functional Analysis 8 (1992), 95–98. (Russian) MR 1231108
Reference: [10] P. Pták: Some nearly Boolean orthomodular posets.Proc. Amer. Math. Soc. 126 (1998), 2039–2046. MR 1452822, 10.1090/S0002-9939-98-04403-7
Reference: [11] P. Pták: Concrete quantum logics.Internat. J. Theoret. Phys. 39 (2000), 827–837. MR 1792201, 10.1023/A:1003626929648
Reference: [12] P. Pták and S. Pulmannová: Orthomodular Structures as Quantum Logics.Kluwer, Dordrecht/Boston/London, 1991. MR 1176314
.

Files

Files Size Format View
CzechMathJ_57-2007-2_16.pdf 328.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo