Previous |  Up |  Next

Article

Title: The continuity of superposition operators on some sequence spaces defined by moduli (English)
Author: Kolk, Enno
Author: Raidjõe, Annemai
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 3
Year: 2007
Pages: 777-792
Summary lang: English
.
Category: math
.
Summary: Let $\lambda $ and $\mu $ be solid sequence spaces. For a sequence of modulus functions $\Phi =(\varphi _{k})$ let $ \lambda (\Phi )= \lbrace x=(x_{k}) \: (\varphi _{k}(|x_{k}|))\in \lambda \rbrace $. Given another sequence of modulus functions $\Psi =(\psi _{k})$, we characterize the continuity of the superposition operators ${P_{f}}$ from $\lambda (\Phi )$ into $\mu (\Psi )$ for some Banach sequence spaces $\lambda $ and $\mu $ under the assumptions that the moduli $\varphi _{k}$ $(k \in \mathbb{N})$ are unbounded and the topologies on the sequence spaces $\lambda (\Phi )$ and $\mu (\Psi )$ are given by certain F-norms. As applications we consider superposition operators on some multiplier sequence spaces of Maddox type. (English)
Keyword: sequence space
Keyword: superposition operator
Keyword: modulus function
Keyword: continuity
MSC: 46A45
MSC: 47H30
idZBL: Zbl 1174.47048
idMR: MR2356280
.
Date available: 2009-09-24T11:49:25Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128206
.
Reference: [1] J.  Appell, P. P.  Zabreĭko: Nonlinear Superposition Operators.Cambridge University Press, Cambridge, 1990. MR 1066204
Reference: [2] M.  Başarir: On some new sequence spaces and related matrix transformations.Indian J.  Pure Appl. Math. 26 (1995), 1003–1010. MR 1364093
Reference: [3] F.  Dedagich, P. P.  Zabreĭko: On superposition operators in $\ell _{p}$  spaces.Sibirsk. Mat. Zh. 28 (1987), 86–98. (Russian) MR 0886856
Reference: [4] K.-G.  Grosse-Erdmann: The structure of the sequence spaces of Maddox.Can. J.  Math. 44 (1992), 298–302. Zbl 0777.46008, MR 1162345, 10.4153/CJM-1992-020-2
Reference: [5] Mushir A.  Khan, Qamaruddin: Some generalized sequence spaces and related matrix transformations.Far East J.  Math. Sci. 5 (1997), 243–252. MR 1465589
Reference: [6] E.  Kolk: Inclusion theorems for some sequence spaces defined by a sequence of moduli.Tartu Ül.  Toimetised 960 (1994), 65–72. MR 1337906
Reference: [7] E.  Kolk: $F$-seminormed sequence spaces defined by a sequence of modulus functions and strong summability.Indian J.  Pure Appl. Math. 28 (1997), 1447–1566. Zbl 0920.46002, MR 1608597
Reference: [8] E.  Kolk: Superposition operators on sequence spaces defined by  $\varphi ~ $-functions.Demonstr. Math. 37 (2004), 159–175. Zbl 1086.47033, MR 2053112
Reference: [9] Y.  Luh: Die Räume  $\ell (p)$, $\ell _\infty (p)$, $c(p)$, $c_0(p)$, $w(p)$, $w_0(p)$ and $w_\infty (p)$.Mitt. Math Sem. Giessen 180 (1987), 35–37. MR 0922437
Reference: [10] I. J.  Maddox: Sequence spaces defined by a modulus.Math. Proc. Camb. Philos. Soc. 100 (1986), 161–166. Zbl 0631.46010, MR 0838663, 10.1017/S0305004100065968
Reference: [11] I. J.  Maddox: Inclusions between FK spaces and Kuttner’s theorem.Math. Proc. Camb. Philos. Soc. 101 (1987), 523–527. Zbl 0631.46009, MR 0878899, 10.1017/S0305004100066883
Reference: [12] S.  Petrantuarat, Y.  Kemprasit: Superposition operators of $\ell _{p}$ and $c_{0}$ into $\ell _{q}$ $(1\le p, q < \infty )$.Southeast Asian Bull. Math. 21 (1997), 139–147. MR 1682993
Reference: [13] R.  Płuciennik: Continuity of superposition operators on  $w_{0}$ and $W_{0}$.Commentat. Math. Univ. Carol. 31 (1990), 529–542. MR 1078487
Reference: [14] J.  Robert: Continuité d’un opérateur non linéaire sur certains espaces de suites.C.  R.  Acad. Sci., Paris 259 (1964), 1287–1290. Zbl 0196.44602, MR 0166602
Reference: [15] W. H.  Ruckle: FK spaces in which the sequence of coordinate vectors is bounded.Can. J.  Math. 25 (1973), 973–978. Zbl 0267.46008, MR 0338731, 10.4153/CJM-1973-102-9
Reference: [16] A.  Sama-ae: Boundedness and continuity of superposition operator on  $E_{r}(p)$ and $F_{r}(p)$.Songklanakarin J.  Sci. Technol. 24 (2002), 451–466.
Reference: [17] V.  Soomer: On the sequence space defined by a sequence of moduli and on the rate-space.Acta Comment. Univ. Tartu. Math. 1 (1996), 71–74. MR 1711648
Reference: [18] S.  Suantai: Boundedness of superposition operators on  $E_{r}$ and $F_{r}$.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 249–259. Zbl 0904.47066, MR 1608173
.

Files

Files Size Format View
CzechMathJ_57-2007-3_1.pdf 321.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo