Title:
|
The continuity of superposition operators on some sequence spaces defined by moduli (English) |
Author:
|
Kolk, Enno |
Author:
|
Raidjõe, Annemai |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
3 |
Year:
|
2007 |
Pages:
|
777-792 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\lambda $ and $\mu $ be solid sequence spaces. For a sequence of modulus functions $\Phi =(\varphi _{k})$ let $ \lambda (\Phi )= \lbrace x=(x_{k}) \: (\varphi _{k}(|x_{k}|))\in \lambda \rbrace $. Given another sequence of modulus functions $\Psi =(\psi _{k})$, we characterize the continuity of the superposition operators ${P_{f}}$ from $\lambda (\Phi )$ into $\mu (\Psi )$ for some Banach sequence spaces $\lambda $ and $\mu $ under the assumptions that the moduli $\varphi _{k}$ $(k \in \mathbb{N})$ are unbounded and the topologies on the sequence spaces $\lambda (\Phi )$ and $\mu (\Psi )$ are given by certain F-norms. As applications we consider superposition operators on some multiplier sequence spaces of Maddox type. (English) |
Keyword:
|
sequence space |
Keyword:
|
superposition operator |
Keyword:
|
modulus function |
Keyword:
|
continuity |
MSC:
|
46A45 |
MSC:
|
47H30 |
idZBL:
|
Zbl 1174.47048 |
idMR:
|
MR2356280 |
. |
Date available:
|
2009-09-24T11:49:25Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128206 |
. |
Reference:
|
[1] J. Appell, P. P. Zabreĭko: Nonlinear Superposition Operators.Cambridge University Press, Cambridge, 1990. MR 1066204 |
Reference:
|
[2] M. Başarir: On some new sequence spaces and related matrix transformations.Indian J. Pure Appl. Math. 26 (1995), 1003–1010. MR 1364093 |
Reference:
|
[3] F. Dedagich, P. P. Zabreĭko: On superposition operators in $\ell _{p}$ spaces.Sibirsk. Mat. Zh. 28 (1987), 86–98. (Russian) MR 0886856 |
Reference:
|
[4] K.-G. Grosse-Erdmann: The structure of the sequence spaces of Maddox.Can. J. Math. 44 (1992), 298–302. Zbl 0777.46008, MR 1162345, 10.4153/CJM-1992-020-2 |
Reference:
|
[5] Mushir A. Khan, Qamaruddin: Some generalized sequence spaces and related matrix transformations.Far East J. Math. Sci. 5 (1997), 243–252. MR 1465589 |
Reference:
|
[6] E. Kolk: Inclusion theorems for some sequence spaces defined by a sequence of moduli.Tartu Ül. Toimetised 960 (1994), 65–72. MR 1337906 |
Reference:
|
[7] E. Kolk: $F$-seminormed sequence spaces defined by a sequence of modulus functions and strong summability.Indian J. Pure Appl. Math. 28 (1997), 1447–1566. Zbl 0920.46002, MR 1608597 |
Reference:
|
[8] E. Kolk: Superposition operators on sequence spaces defined by $\varphi ~ $-functions.Demonstr. Math. 37 (2004), 159–175. Zbl 1086.47033, MR 2053112 |
Reference:
|
[9] Y. Luh: Die Räume $\ell (p)$, $\ell _\infty (p)$, $c(p)$, $c_0(p)$, $w(p)$, $w_0(p)$ and $w_\infty (p)$.Mitt. Math Sem. Giessen 180 (1987), 35–37. MR 0922437 |
Reference:
|
[10] I. J. Maddox: Sequence spaces defined by a modulus.Math. Proc. Camb. Philos. Soc. 100 (1986), 161–166. Zbl 0631.46010, MR 0838663, 10.1017/S0305004100065968 |
Reference:
|
[11] I. J. Maddox: Inclusions between FK spaces and Kuttner’s theorem.Math. Proc. Camb. Philos. Soc. 101 (1987), 523–527. Zbl 0631.46009, MR 0878899, 10.1017/S0305004100066883 |
Reference:
|
[12] S. Petrantuarat, Y. Kemprasit: Superposition operators of $\ell _{p}$ and $c_{0}$ into $\ell _{q}$ $(1\le p, q < \infty )$.Southeast Asian Bull. Math. 21 (1997), 139–147. MR 1682993 |
Reference:
|
[13] R. Płuciennik: Continuity of superposition operators on $w_{0}$ and $W_{0}$.Commentat. Math. Univ. Carol. 31 (1990), 529–542. MR 1078487 |
Reference:
|
[14] J. Robert: Continuité d’un opérateur non linéaire sur certains espaces de suites.C. R. Acad. Sci., Paris 259 (1964), 1287–1290. Zbl 0196.44602, MR 0166602 |
Reference:
|
[15] W. H. Ruckle: FK spaces in which the sequence of coordinate vectors is bounded.Can. J. Math. 25 (1973), 973–978. Zbl 0267.46008, MR 0338731, 10.4153/CJM-1973-102-9 |
Reference:
|
[16] A. Sama-ae: Boundedness and continuity of superposition operator on $E_{r}(p)$ and $F_{r}(p)$.Songklanakarin J. Sci. Technol. 24 (2002), 451–466. |
Reference:
|
[17] V. Soomer: On the sequence space defined by a sequence of moduli and on the rate-space.Acta Comment. Univ. Tartu. Math. 1 (1996), 71–74. MR 1711648 |
Reference:
|
[18] S. Suantai: Boundedness of superposition operators on $E_{r}$ and $F_{r}$.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 249–259. Zbl 0904.47066, MR 1608173 |
. |