Previous |  Up |  Next

Article

Title: Absolute continuity theorems for abstract Riemann integration (English)
Author: Amo, E. de
Author: Campo, R. del
Author: Díaz-Carrillo, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 3
Year: 2007
Pages: 793-807
Summary lang: English
.
Category: math
.
Summary: Absolute continuity for functionals is studied in the context of proper and abstract Riemann integration examining the relation to absolute continuity for finitely additive measures and giving results in both directions: integrals coming from measures and measures induced by integrals. To this end, we look for relations between the corresponding integrable functions of absolutely continuous integrals and we deal with the possibility of preserving absolute continuity when extending the elemental integrals. (English)
Keyword: finitely additive integration
Keyword: abstract Riemann integration
Keyword: absolute continuity
MSC: 28C05
idZBL: Zbl 1174.28015
idMR: MR2356281
.
Date available: 2009-09-24T11:49:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128207
.
Reference: [1] E. de Amo, I. Chiţescu and M. Díaz-Carrillo: An approximate functional Radon-Nikodym theorem.Rend. del Circ. Mat. de Palermo 48 (1999), 443–450. MR 1731446
Reference: [2] E. de Amo, I. Chiţescu and M. Díaz-Carrillo: An exact functional Radon-Nikodym theorem for Daniell Integrals.Studia Mathematica 148 (2001), 97–110. MR 1881255, 10.4064/sm148-2-1
Reference: [3] E. de Amo and M. Díaz-Carrillo: On abstract Fubini theorems for finitely additive integration.Proc. Amer. Math. Soc. 123 (1995), 2739–2744. MR 1257101, 10.1090/S0002-9939-1995-1257101-6
Reference: [4] G. Aumann: Integralerweiterungen mittels Normen.Arch. Math. 3 (1952), 441–450. Zbl 0048.03703, MR 0054693, 10.1007/BF01900560
Reference: [5] S. Bochner: Additive set functions on groups.Ann. of Math. 40 (1939), 769–799. Zbl 0024.04203, MR 0000669, 10.2307/1968893
Reference: [6] M. Díaz-Carrillo: Handbook of Measure Theory, Vol. 1, Chap. 11.2002. MR 1953489
Reference: [7] M. Díaz-Carrillo and H. Günzler: Abstract Daniell-Loomis spaces.Bull. Austral. Math. Soc. 53 (1996), 135–142. MR 1371921, 10.1017/S0004972700016804
Reference: [8] M. Díaz-Carrillo and H. Günzler: Daniell-Loomis integrals.Rocky Mount. J. Math. 27 (1997), 1057–1087. MR 1627666
Reference: [9] M. Díaz-Carrillo and P. Muñoz-Rivas: Finitely additive integration: integral extension with local-convergence.Ann. Sci. Math. Québec 17 (1993), 145–154. MR 1259371
Reference: [10] M. Díaz-Carrillo and P. Muñoz-Rivas: Positive linear functionals and improper integration.Ann. Sci. Math. Québec 18 (1994), 149–156. MR 1311751
Reference: [11] N. Dunford and J. T. Schwartz: Linear Operartors, part I, General Theory.Interscience, New-York, 1957. MR 1009162
Reference: [12] C. Fefferman: A Radon-Nikodym theorem for finitely additive set functions.Pacific J. Math. 23 (1967), 35–45. Zbl 0181.14801, MR 0215956, 10.2140/pjm.1967.23.35
Reference: [13] H. Günzler: Integration.Bibliographisches Institut, Mannheim, 1985. MR 0802205
Reference: [14] L. H. Loomis: Linear functionals and content.Amer. J. Math. 76 (1954), 168–182. Zbl 0055.10101, MR 0060145, 10.2307/2372407
Reference: [15] W. F. Pfeffer: Integrals and Measures.Dekker, New-York, 1977. Zbl 0362.28004, MR 0460580
Reference: [16] M. H. Stone: Notes on integration I–IV.Proc. Nat. Acad. Sci., USA 34 (1948), 336–342, 447–455, 483–490. MR 0025552, 10.1073/pnas.34.10.483
Reference: [17] F. W. Schäfke: Lokale Integralnormen and verallgemeinerte uneigentlich Riemann-Stiltjes-Integrals.J.Reine Angew. Math. 289 (1977), 118–134. MR 0453968
.

Files

Files Size Format View
CzechMathJ_57-2007-3_2.pdf 307.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo