Previous |  Up |  Next

Article

Title: The Kato-type spectrum and local spectral theory (English)
Author: Miller, T. L.
Author: Miller, V. G.
Author: Neumann, M. M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 3
Year: 2007
Pages: 831-842
Summary lang: English
.
Category: math
.
Summary: Let $T\in {\mathcal{L}}(X)$ be a bounded operator on a complex Banach space $X$. If $V$ is an open subset of the complex plane such that $\lambda -T$ is of Kato-type for each $\lambda \in V$, then the induced mapping $f(z)\mapsto (z-T)f(z)$ has closed range in the Fréchet space of analytic $X$-valued functions on $V$. Since semi-Fredholm operators are of Kato-type, this generalizes a result of Eschmeier on Fredholm operators and leads to a sharper estimate of Nagy’s spectral residuum of $T$. Our proof is elementary; in particular, we avoid the sheaf model of Eschmeier and Putinar and the theory of coherent analytic sheaves. (English)
Keyword: decomposable operator
Keyword: semi-Fredholm operator
Keyword: semi-regular operator
Keyword: Kato decomposition
Keyword: Bishop’s property ($\beta $)
Keyword: property ($\delta $)
MSC: 47A11
MSC: 47A53
idZBL: Zbl 1174.47001
idMR: MR2356283
.
Date available: 2009-09-24T11:49:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128209
.
Reference: [1] P. Aiena: Fredholm and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publ., Dordrecht, 2004. Zbl 1077.47001, MR 2070395
Reference: [2] P. Aiena and F. Villafañe: Components of resolvent sets and local spectral theory.Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 1–14. MR 1990385
Reference: [3] E. Albrecht and J. Eschmeier: Analytic functional models and local spectral theory.Proc. London Math. Soc. 75 (1997), 323–348. MR 1455859
Reference: [4] J. Eschmeier: Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie.Habilitationsschrift, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 42, Münster, 1987. Zbl 0619.47030, MR 0876484
Reference: [5] J. Eschmeier: On the essential spectrum of Banach space operators.Proc. Edinburgh Math. Soc. 43 (2000), 511–528. Zbl 0980.47004, MR 1878655
Reference: [6] D. Herrero: On the essential spectra of quasisimilar operators.Can. J. Math. 40 (1988), 1436–1457. Zbl 0723.47015, MR 0990108, 10.4153/CJM-1988-066-x
Reference: [7] T. Kato: Perturbation theory for nullity, deficiency and other quantities of linear operators.J. Anal. Math. 6 (1958), 261–322. Zbl 0090.09003, MR 0107819, 10.1007/BF02790238
Reference: [8] J.-P. Labrousse: Les opérateurs quasi Fredholm: une généralisation des opérateurs semi Fredholm.Rend. Circ. Mat. Palermo 29 (1980), 161–258. Zbl 0474.47008, MR 0636072, 10.1007/BF02849344
Reference: [9] K. B. Laursen and M. M. Neumann: An Introduction to Local Spectral Theory.Clarendon Press, Oxford, 2000. MR 1747914
Reference: [10] T. L. Miller and V. G. Miller: Equality of essential spectra of quasisimilar operators with property $(\delta )$.Glasgow Math. J. 38 (1996), 21–28. MR 1373954, 10.1017/S0017089500031219
Reference: [11] T. L. Miller, V. G. Miller and M. M. Neumann: Localization in the spectral theory of operators on Banach spaces.Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 247–262. MR 1990406
Reference: [12] B. Nagy: On $S$-decomposable operators.J. Operator Theory 2 (1979), 277–286. Zbl 0436.47024, MR 0559609
Reference: [13] M. Putinar: Quasi-similarity of tuples with Bishop’s property $(\beta )$.Int. Eq. and Oper. Theory 15 (1992), 1047–1052. Zbl 0773.47011, MR 1188794, 10.1007/BF01203128
Reference: [14] F.-H. Vasilescu: Analytic Functional Calculus and Spectral Decompositions.Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982. Zbl 0495.47013, MR 0690957
.

Files

Files Size Format View
CzechMathJ_57-2007-3_4.pdf 308.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo