Title:
|
A general class of iterative equations on the unit circle (English) |
Author:
|
Zdun, Marek C. |
Author:
|
Zhang, Weinian |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
3 |
Year:
|
2007 |
Pages:
|
809-829 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A class of functional equations with nonlinear iterates is discussed on the unit circle ${\mathbb{T}}^1$. By lifting maps on ${\mathbb{T}}^1$ and maps on the torus ${\mathbb{T}}^n$ to Euclidean spaces and extending their restrictions to a compact interval or cube, we prove existence, uniqueness and stability for their continuous solutions. (English) |
Keyword:
|
iterative equation |
Keyword:
|
circle |
Keyword:
|
lift |
Keyword:
|
orientation-preserving |
Keyword:
|
continuation |
MSC:
|
37E05 |
MSC:
|
39B12 |
MSC:
|
39B22 |
MSC:
|
39B32 |
MSC:
|
39B82 |
idZBL:
|
Zbl 1174.39005 |
idMR:
|
MR2356282 |
. |
Date available:
|
2009-09-24T11:49:39Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128208 |
. |
Reference:
|
[1] M. Bajger: On the structure of some flows on the unit circle.Aequationes Math. 55 (1998), 106–121. Zbl 0891.39017, MR 1600588, 10.1007/s000100050023 |
Reference:
|
[2] K. Baron and W. Jarczyk: Recent results on functional equations in a single variable, perspectives and open problems.Aequationes Math. 61 (2001), 1–48. MR 1820808, 10.1007/s000100050159 |
Reference:
|
[3] K. Ciepliński: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups.Publ. Math. Debrecen 55 (1999), 363–383. MR 1721896 |
Reference:
|
[4] K. Ciepliński: On properties of monotone mappings of the circle.J. Anal. Appl. 4 (2006), 169–178. MR 2237441 |
Reference:
|
[5] I. P. Cornfeld, S. V. Fomin and Y. G. Sinai: Ergodic Theory, Grundlehren 245, Springer Verlag, Berlin-Heidelberg-New York.1982. MR 0832433 |
Reference:
|
[6] W. Jarczyk: On an equation of linear iteration.Aequationes Math. 51 (1996), 303–310. Zbl 0872.39010, MR 1394735, 10.1007/BF01833285 |
Reference:
|
[7] W. Jarczyk: Babbage equation on the circle.Publ. Math. Debrecen 63 (2003), 389–400. MR 2018071 |
Reference:
|
[8] M. Kuczma, B. Choczewski and R. Ger: Iterative Functional Equations.Encycl. Math. Appl. 32, Cambridge Univ. Press, Cambridge, 1990. MR 1067720 |
Reference:
|
[9] M. Kulczycki and J. Tabor: Iterative functional equations in the class of Lipschitz functions.Aequationes Math. 64 (2002), 24–33. MR 1929247, 10.1007/s00010-002-8028-2 |
Reference:
|
[10] J. Mai: Conditions of existence for $N$-th iterative roots of homeomorphisms on the circle, in Chinese.Acta Math. Sinica 30 (1987), 280–283. MR 0891939 |
Reference:
|
[11] J. Mai and X. Liu: Existence, uniqueness and stability of $C^m$ solutions of iterative functional equations.Science in China A43 (2000), 897–913. MR 1804042 |
Reference:
|
[12] J. Matkowski and W. Zhang: On the polynomial-like iterative functional equation.Functional Equations & Inequalities, Math.& Its Appl. Vol. 518, ed. T. M. Rassias, Kluwer Academic, Dordrecht, 2000, pp. 145–170. MR 1792082 |
Reference:
|
[13] A. Mukherjea and J. S. Ratti: On a functional equation involving iterates of a bijection on the unit interval.Nonlinear Anal. 7 (1983), 899–908. MR 0709042 |
Reference:
|
[14] J. Palis and W. Melo: Geometric Theory of Dynamical Systems, An Introduction.Springer-Verlag, New York, 1982. MR 0669541 |
Reference:
|
[15] J. Si: Continuous solutions of iterative equation $G(f(x), f^{n_2}(x),\dots , f^{n_k}(x))=F(x)$.J. Math. Res. Exp. 15 (1995), 149–150. (Chinese) MR 1334273 |
Reference:
|
[16] P. Solarz: On some iterative roots on the circle.Publ. Math. Debrecen 63 (2003), 677–692. Zbl 1050.39027, MR 2020780 |
Reference:
|
[17] J. Tabor and J. Tabor: On a linear iterative equation.Results in Math. 27 (1995), 412–421. MR 1331116, 10.1007/BF03322847 |
Reference:
|
[18] C. T. C. Wall: A Geometric Introduction to Topology.Addison-Wesley, Reading, 1972. MR 0478128 |
Reference:
|
[19] D. Yang and W. Zhang: Characteristic solutions of polynomial-like iterative equations.Aequationes Math. 67 (2004), 80–105. MR 2049607, 10.1007/s00010-003-2708-4 |
Reference:
|
[20] M. C. Zdun: On iterative roots of homeomorphisms of the circle.Bull. Polish Acad. Sci. Math. 48 (2000), 203–213. Zbl 0996.39016, MR 1768699 |
Reference:
|
[21] J. Zhang, L. Yang and W. Zhang: Some advances on functional equations.Adv. Math. (Chin.) 24 (1995), 385–405. MR 1381750 |
Reference:
|
[22] W. Zhang: Discussion on the solutions of the iterated equation $\sum _{i=1}^n\lambda _if^i(x)=F(x)$.Chin. Sci. Bul. 32 (1987), 1444–1451. MR 1006051 |
Reference:
|
[23] W. Zhang: Discussion on the differentiable solutions of the iterated equation $\sum _{i=1}^n\!\lambda _if^i(x){=}F(x)$.Nonlinear Anal. 15 (1990), 387–398. MR 1066395, 10.1016/0362-546X(90)90147-9 |
Reference:
|
[24] W. Zhang and J. A. Baker: Continuous solutions of a polynomial-like iterative equation with variable coefficients.Ann. Polon. Math. 73 (2000), 29–36. MR 1786685, 10.4064/ap-73-1-29-36 |
Reference:
|
[25] W. Zhang: Solutions of equivariance for a polynomial-like iterative equation.Proc. Royal Soc. Edinburgh 130A (2000), 1153–1163. Zbl 0983.39010, MR 1800096 |
Reference:
|
[26] Zhu-Sheng Zhang: Relations between embedding flows and transformation groups of self-mappings on the circle.Acta Math. Sinica 24 (1981), 953–957. (Chinese) MR 0658369 |
. |