Previous |  Up |  Next

Article

Title: Weak homogeneity of lattice ordered groups (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 3
Year: 2007
Pages: 849-863
Summary lang: English
.
Category: math
.
Summary: In this paper we deal with weakly homogeneous direct factors of lattice ordered groups. The main result concerns the case when the lattice ordered groups under consideration are archimedean, projectable and conditionally orthogonally complete. (English)
Keyword: lattice ordered group
Keyword: weak homogeneity
Keyword: direct product
Keyword: cardinal property
Keyword: $f$-homogeneity
MSC: 06F15
idZBL: Zbl 1174.06337
idMR: MR2356285
.
Date available: 2009-09-24T11:50:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128211
.
Reference: [1] G. Birkhoff: Lattice Theory.Third Edition, Providence, 1967. Zbl 0153.02501, MR 0227053
Reference: [2] R. Cignoli, I. M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
Reference: [3] P. Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011
Reference: [4] J. Jakubík: Cardinal properties of lattice ordered groups.Fundamenta Math. 74 (1972), 85–98. MR 0302528, 10.4064/fm-74-2-85-98
Reference: [5] J. Jakubík: Konvexe Ketten in $\ell $-Gruppen.Časopis pěst. mat. 83 (1958), 53–63. MR 0104740
Reference: [6] J. Jakubík: Retract mappings of projectable $MV$-algebras.Soft Computing 4 (2000), 27–32.
Reference: [7] J. Jakubík: Direct product decompositions of MV-algebras.Czech. Math. J. 44 (1994), 725–739.
Reference: [8] J. Jakubík: Weak homogeneity of and Pierce’s theorem for $MV$-algebras.Czech. Math. J. 56 (2006), 1215–1227. MR 2280805, 10.1007/s10587-006-0090-9
Reference: [9] R. S. Pierce: A note on complete Boolean algebras.Proc. Amer. Math. Soc. 9 (1958), 892–896. MR 0102487, 10.1090/S0002-9939-1958-0102487-6
Reference: [10] R. S. Pierce: Some questions about complete Boolean algebras.Proc. Sympos. Pure Math. 2 (1961), 129–140. Zbl 0101.27104, MR 0138570
Reference: [11] R. Sikorski: Boolean Algebras.Second Edition, Springer Verlag, Berlin, 1964. Zbl 0123.01303, MR 0126393
Reference: [12] F. Šik: Über subdirekte Summen geordneter Gruppen.Czech. Math. J. 10 (1960), 400–424. MR 0123626
.

Files

Files Size Format View
CzechMathJ_57-2007-3_6.pdf 301.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo