Previous |  Up |  Next

Article

Title: Real hypersurfaces in complex space forms concerned with the local symmetry (English)
Author: Lyu, Seon Mi
Author: Pérez, Juan de Dios
Author: Suh, Young Jin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 3
Year: 2007
Pages: 885-905
Summary lang: English
.
Category: math
.
Summary: This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface $M$ in complex space form $M_m(4\epsilon )$. In the second, we give a complete classification of real hypersurfaces in $M_m(4\epsilon )$ which satisfy the above geometric facts. (English)
Keyword: real hypersurfaces
Keyword: local symmetry
Keyword: derivations
Keyword: Kulkarni-Nomizu product
MSC: 53C15
MSC: 53C40
MSC: 53D15
idZBL: Zbl 1174.53034
idMR: MR2356288
.
Date available: 2009-09-24T11:50:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128214
.
Reference: [1] J. Berndt: Real hypersurfaces with constant principal curvatures in a complex hyperbolic space.J.  Reine Angew. Math. 395 (1989), 132–141. MR 0983062
Reference: [2] J. Berndt: Real hypersurfaces in quaternionic space forms.J.  Reine Angew. Math. 419 (1991), 9–26. Zbl 0718.53017, MR 1116915
Reference: [3] J.  Berndt, Y. J.  Suh: Real hypersurfaces in complex two-plane Grassmannians.Monatsh. Math. 127 (1999), 1–14. MR 1666307, 10.1007/s006050050018
Reference: [4] J.  Berndt, Y. J.  Suh: Isometric flows on real hypersurfaces in complex two-plane Grassmannians.Monatsh. Math. 137 (2002), 87–98. MR 1937621, 10.1007/s00605-001-0494-4
Reference: [5] B. Y. Chen, G. D. Ludden, and S. Montiel: Real submanifolds of a Kaehler manifold.Algebras Groups Geom. 1 (1984 1984), 176–212. MR 0760492
Reference: [6] U.-H. Ki, Y. J. Suh: On real hypersurfaces of a complex space form.Math. J.  Okayama Univ. 32 (1990), 207–221. MR 1112028
Reference: [7] U.-H. Ki, Y. J. Suh: On a characterization of real hypersurfaces of type  $A$ in a complex space form.Canad. Math. Bull. 37 (1994), 238–244. MR 1275710, 10.4153/CMB-1994-035-8
Reference: [8] S.  Kobayashi, K.  Nomizu: Foundations of Differential Geometry.Interscience, New York-London-Sydney, 1963. MR 0152974
Reference: [9] M. Kimura: Real hypersurfaces and complex submanifolds in complex projective space.Trans. Amer. Math. Soc. 296 (1986), 137–149. Zbl 0597.53021, MR 0837803, 10.1090/S0002-9947-1986-0837803-2
Reference: [10] M. Kimura, S. Maeda: On real hypersurfaces of complex projective space  II.Tsukuba J.  Math. 15 (1994), 547–561. MR 1138204
Reference: [11] S. M.  Lyu, J. D.  Pérez, and Y. J.  Suh: On real hypersurfaces in a quaternionic hyperbolic space in terms of the derivative of the second fundamental tensor.Acta Math. Hungarica 97 (2002), 145–172. MR 1932801, 10.1023/A:1020819214682
Reference: [12] Y. Maeda: On real hypersurfaces of a complex projective space.J. Math. Soc. Japan 28 (1976 1976), 529–540. MR 0407772
Reference: [13] S. Montiel: Real hypersurfaces of a complex hyperbolic space.J.  Math. Soc. Japan 37 (1985), 515–535. Zbl 0554.53021, MR 0792990, 10.2969/jmsj/03730515
Reference: [14] S. Montiel: Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter space.J.  Math. Soc. Japan 55 (2003), 915–938. MR 2003752, 10.2969/jmsj/1191418756
Reference: [15] S. Montiel, A. Romero: On some real hypersurfaces of a complex hyperbolic space.Geom. Dedicata 20 (1986), 245–261. MR 0833849, 10.1007/BF00164402
Reference: [16] M. Okumura: On some real hypersurfaces of a complex projective space.Trans. Amer. Math. Soc. 212 (1975), 355–364. Zbl 0288.53043, MR 0377787, 10.1090/S0002-9947-1975-0377787-X
Reference: [17] B. O’Neill: The fundamental equation of a submersion.Michigan Math.  J. 13 (1966), 459–469. MR 0200865, 10.1307/mmj/1028999604
Reference: [18] M. Ortega, J. D. Pérez, and Y. J. Suh: Real hypersurfaces with constant totally real sectional curvatures in a complex space form.Czech. Math.  J. 50(125) (2000), 531–537. MR 1777474, 10.1023/A:1022881510000
Reference: [19] M.  Ortega, J. D. Pérez, and Y. J.  Suh: Real hypersurfaces in quaternionic projective space with commuting tangent Jacobi operators.Glasgow Math.  J. 45 (2003), 51–65. MR 1972696, 10.1017/S0017089502001015
Reference: [20] J. D.  Pérez, Y. J.  Suh: Real hypersurfaces of quaternionic projective space satisfying $\nabla _{U_i}R=0$.Diff. Geom. Appl. 7 (1997), 211–217. MR 1480534, 10.1016/S0926-2245(97)00003-X
Reference: [21] D. J. Sohn, Y. J. Suh: Classification of real hypersurfaces in complex hyperbolic space in terms of constant $\phi $-holomorphic sectional curvatures.Kyungpook Math.  J. 35 (1996), 801–819. MR 1678228
Reference: [22] Y. J. Suh: A characterization of ruled real hypersurfaces in $P_m(\mathbb{C})$.J.  Korean Math. Soc. 29 (1992), 351–359. MR 1180662
Reference: [23] Y. J. Suh, R. Takagi: A rigidity for real hypersurfaces in a complex projective space.Tohoku Math.  J. 43 (1991), 501–507. MR 1133864, 10.2748/tmj/1178227424
Reference: [24] R. Takagi: On homogeneous real hypersurfaces of a complex projective space.Osaka J.  Math. 10 (1973), 495–506. MR 0336660
.

Files

Files Size Format View
CzechMathJ_57-2007-3_9.pdf 339.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo