Previous |  Up |  Next

Article

Title: On the integral representation of superbiharmonic functions (English)
Author: Abkar, Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 3
Year: 2007
Pages: 877-883
Summary lang: English
.
Category: math
.
Summary: We consider a nonnegative superbiharmonic function $w$ satisfying some growth condition near the boundary of the unit disk in the complex plane. We shall find an integral representation formula for $w$ in terms of the biharmonic Green function and a multiple of the Poisson kernel. This generalizes a Riesz-type formula already found by the author for superbihamonic functions $w$ satisfying the condition $0\le w(z)\le C(1-|z|)$ in the unit disk. As an application we shall see that the polynomials are dense in weighted Bergman spaces whose weights are superbiharmonic and satisfy the stated growth condition near the boundary. (English)
Keyword: superbiharmonic function
Keyword: biharmonic Green function
Keyword: weighted Bergman space
MSC: 31A10
MSC: 31A30
MSC: 35C15
idZBL: Zbl 1174.31302
idMR: MR2356287
.
Date available: 2009-09-24T11:50:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128213
.
Reference: [1] A. Abkar: Application of a Riesz-type formula to weighted Bergman spaces.Proc. Amer. Math. Soc. 131 (2003), 155–164. Zbl 1037.31002, MR 1929035, 10.1090/S0002-9939-02-06491-2
Reference: [2] A. Abkar: Norm approximation by polynomials in some weighted Bergman spaces.J. Func. Anal. 191 (2002), 224–240. Zbl 1059.30049, MR 1911185, 10.1006/jfan.2001.3851
Reference: [3] H. Hedenmalm: A computation of Green function for the weighted biharmonic operators $\Delta \vert z\vert ^{-2\alpha }\Delta $ with $\alpha >-1$.Duke Math. J. 75 (1994), 51–78. MR 1284815, 10.1215/S0012-7094-94-07502-9
Reference: [4] K. Hoffman: Banach Spaces of Analytic Functions.Dover Publications, Inc. New York, 1988. Zbl 0734.46033, MR 1102893
.

Files

Files Size Format View
CzechMathJ_57-2007-3_8.pdf 241.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo