Previous |  Up |  Next

Article

Title: Hurwitz continued fractions with confluent hypergeometric functions (English)
Author: Komatsu, Takao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 3
Year: 2007
Pages: 919-932
Summary lang: English
.
Category: math
.
Summary: Many new types of Hurwitz continued fractions have been studied by the author. In this paper we show that all of these closed forms can be expressed by using confluent hypergeometric functions ${}_0F_1(;c;z)$. In the application we study some new Hurwitz continued fractions whose closed form can be expressed by using confluent hypergeometric functions. (English)
Keyword: Hurwitz continued fractions
MSC: 11A55
MSC: 11J70
MSC: 33C10
idZBL: Zbl 1163.11009
idMR: MR2356930
.
Date available: 2009-09-24T11:50:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128216
.
Reference: [1] A. Châtelet: Contribution a la théorie des fractions continues arithmétiques.Bull. Soc. Math. France 40 (1912), 1–25. MR 1504676
Reference: [2] A.  Hurwitz: Über die Kettenbrüche, deren Teilnenner arithmetische Reihen bilden. Vierteljahrsschrift d.  Naturforsch. Gesellschaft in Zürich, Jahrg.  41, 1896..
Reference: [3] W. B.  Jones, W. J.  Thron: Continued Fractions: Analytic Theory and Applications (Encyclopedia of mathematics and its applications, Vol.  11).Addison-Wesley, Reading, 1980. MR 0595864
Reference: [4] T.  Komatsu: On Hurwitzian and Tasoev’s continued fractions.Acta Arith. 107 (2003), 161–177. Zbl 1026.11012, MR 1970821, 10.4064/aa107-2-4
Reference: [5] T.  Komatsu: Simple continued fraction expansions of some values of certain hypergeometric functions.Tsukuba J.  Math. 27 (2003), 161–173. Zbl 1045.11006, MR 1999242, 10.21099/tkbjm/1496164567
Reference: [6] T.  Komatsu: Hurwitz and Tasoev continued fractions.Monatsh. Math. 145 (2005), 47–60. Zbl 1095.11008, MR 2134479, 10.1007/s00605-004-0281-0
Reference: [7] O.  Perron: Die Lehre von den Kettenbrüchen, Band  I.Teubner, Stuttgart, 1954. Zbl 0056.05901, MR 0064172
Reference: [8] G. N.  Raney: On continued fractions and finite automata.Math. Ann. 206 (1973), 265–283. Zbl 0251.10024, MR 0340166, 10.1007/BF01355980
Reference: [9] L. J.  Slater: Generalized hypergeometric functions.Cambridge Univ. Press, Cambridge, 1966. Zbl 0135.28101, MR 0201688
Reference: [10] H. S.  Wall: Analytic Theory of Continued Fractions.D.  van Nostrand Company, Toronto, 1948. Zbl 0035.03601, MR 0025596
.

Files

Files Size Format View
CzechMathJ_57-2007-3_11.pdf 282.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo