[3] F.  Forelli and W.  Rudin: 
Projections on spaces of holomorphic functions in balls. Indiana Univ. Math.  J. 24 (1974), 593–602. 
MR 0357866[5] C.  Kolaski: 
A new look at a theorem of Forelli and Rudin. Indiana Univ. Math.  J. 28 (1979), 495–499. 
MR 0529680 | 
Zbl 0412.41023[8] G. B.  Ren and J. H.  Shi: 
Bergman type operator on mixed norm spaces with applications. Chin. Ann. Math., Ser. B 18 (1997), 265–276. 
MR 1480002[9] G. B.  Ren and J. H.  Shi: 
Forelli-Rudin type theorem on pluriharmonic Bergman spaces with small exponent. Sci. China, Ser.  A 42 (1999), 1286–1291. 
DOI 10.1007/BF02876029 | 
MR 1749939[10] G. B.  Ren and J. H.  Shi: 
Gleason’s problem in weighted Bergman space on egg domains. Sci. China, Ser.  A 41 (1998), 225–231. 
DOI 10.1007/BF02879040 | 
MR 1621125[11] A. L.  Shields and D. L.  Williams: 
Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162 (1971), 287–302. 
MR 0283559[12] K. H.  Zhu: 
The Bergman spaces, the Bloch spaces and Gleason’s problem. Trans. Am. Math. Soc. 309 (1988), 253–268. 
MR 0931533[13] K. H.  Zhu: 
Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics  226. Springer-Verlag, New York, 2005. 
MR 2115155